
What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Property-Based Testing

Patrick Stevens

G-Research

Doge Conf 2019

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

1 What’s the problem?
A program to test
Testing the program
But can I really trust myself?

2 Introduction to FsCheck
FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

3 Metatesting
Was the testing comprehensive?
Manipulating the cases

4 Stateful systems
Example
Testing with FsCheck

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

1 What’s the problem?
A program to test
Testing the program
But can I really trust myself?

2 Introduction to FsCheck
FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

3 Metatesting
Was the testing comprehensive?
Manipulating the cases

4 Stateful systems
Example
Testing with FsCheck

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Let’s have something to test

Interval set: a space-efficient set of integers
Defining example:

{1, 2, 3, 4, 8, 9, 10}

[(1, 4), (8, 10)]

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Public API

type IntervalSet

[<RequireQualifiedAccess>]

module IntervalSet =

val empty : IntervalSet

val add : int -> IntervalSet -> IntervalSet

val contains : int -> IntervalSet -> bool

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation

This is a presentation about testing.
Yes, there will be a bug somewhere.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Data structure

type private Interval =

{

Min : int

Max : int

}

type IntervalSet = private IntervalSet of Interval list

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: empty

[<RequireQualifiedAccess>]

module IntervalSet =

let empty = IntervalSet []

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: insertion

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> [{ Min = a ; Max = a }]

| _ -> ...

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: insertion

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> ...

| interval :: is ->

if interval.Min <= a && a <= interval.Max then

ls // no need to add, it’s already there

else ...

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: insertion

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> ...

| interval :: is ->

if // already there...

elif interval.Min - 1 = a then

{ interval with Min = interval.Min - 1 }

:: is // augment this interval to contain a

elif interval.Max + 1 = a then

{ interval with Max = interval.Max + 1 }

:: is // augment this interval to contain a

...

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: insertion

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> ...

| interval :: is ->

if // already there...

elif // can be added to this interval...

else // can’t add it here; recurse

add’ a is

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: insertion

[<RequireQualifiedAccess>]

module IntervalSet =

let add (a : int) (IntervalSet intervals) =

add’ a intervals

|> IntervalSet

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Implementation: containment

let rec contains (a : int) (IntervalSet ls) =

ls

|> List.tryFind (fun interval ->

interval.Min <= a && a <= interval.Max)

|> Option.isSome

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

Start testing!

Helper function for tests:

let create (is : int list) : IntervalSet =

is

|> List.fold

(fun set i -> IntervalSet.add i set)

IntervalSet.empty

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

What can we test?

We should test some different lists and their resulting IntervalSets.

[3; 4] contains 5? (No.)

[3; 5] contains 5? (Yes.)

[3; 4; 5] contains 4? (Yes.)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

The test cases

create [3; 4]

|> IntervalSet.contains 5

|> shouldEqual false

create [3; 5]

|> IntervalSet.contains 5

|> shouldEqual true

create [3; 4; 5]

|> IntervalSet.contains 4

|> shouldEqual true

Hooray, the tests pass!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

The test cases

create [3; 4]

|> IntervalSet.contains 5

|> shouldEqual false

create [3; 5]

|> IntervalSet.contains 5

|> shouldEqual true

create [3; 4; 5]

|> IntervalSet.contains 4

|> shouldEqual true

Hooray, the tests pass!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

... but is it right?

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

... but is it right?

I don’t know!

I’m lazy

I’m stupid

I hate testing

Isn’t there a better way?

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

FsCheck can help!

Sneak peek: FsCheck will tell us that this implementation is wrong.

Falsifiable, after 35 tests (15 shrinks)

(StGen 9514417537,296661223)):

Original:

[0; 0; 0; 0; 0; 0; 0; 12; 1; -2; 0; 0; 0; 0; 0; 0; 0]

12

Shrunk:

[12; 0]

12

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

FsCheck’s test

The last two lines FsCheck gave us were:

[12; 0]

12

FsCheck found this test:

create [12; 0]

|> IntervalSet.contains 12

|> shouldEqual true

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

A program to test
Testing the program
But can I really trust myself?

FsCheck’s test

The last two lines FsCheck gave us were:

[12; 0]

12

FsCheck found this test:

create [12; 0]

|> IntervalSet.contains 12

|> shouldEqual true

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

1 What’s the problem?
A program to test
Testing the program
But can I really trust myself?

2 Introduction to FsCheck
FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

3 Metatesting
Was the testing comprehensive?
Manipulating the cases

4 Stateful systems
Example
Testing with FsCheck

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Why do you test?

Your program does what you want it to.

Your program doesn’t do what you don’t want it to.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

How do you normally test?

1 Come up with examples.

2 Work out what your program should do on those examples.

3 Run the program and check it did what you wanted.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

But what are you really doing?

You’re testing properties through representative examples.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Why not just test properties?

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

FsCheck tests properties automatically

Find edge cases

Find large, complicated cases

Shrink large cases automatically

Make sure you can repeat any failures (the TDD way!)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

The failing property for IntervalSet

Create an IntervalSet from a list of integers. . .

then check for containment. . .

should be the same as checking the original list.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

The failing property for IntervalSet, in code

let property (ints : int list) (toCheck : int) : bool =

create ints

|> IntervalSet.contains toCheck

|> (=) (List.contains doesContain ints)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Invoke FsCheck

open FsCheck

let property (ints : int list) (toCheck : int) : bool =

create ints

|> IntervalSet.contains toCheck

|> (=) (List.contains doesContain ints)

[<Test>]

let testProperty () =

Check.QuickThrowOnFailure property

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

FsCheck’s output, revisited

Falsifiable, after 35 tests (15 shrinks)

(StGen 9514417537,296661223)):

Original:

[0; 0; 0; 0; 0; 0; 0; 12; 1; -2; 0; 0; 0; 0; 0; 0; 0]

12

Shrunk:

[12; 0]

12

FsCheck constructed 35 tests before finding a failure. It then
shrank the test case to the smallest failure it could find.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Advantages

No thought required!

Perfectly reproducible

Edge cases automatically examined closely

Randomised testing increases coverage

(Make sure you explicitly test any failures FsCheck finds, so that
nothing is lost to the mists of time!)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

The bug

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> [{ Min = a ; Max = a }]

| interval :: is ->

if (* contains *) then

ls

elif (* is 1 below *) then

elif (* is 1 above *) then

else

add’ a is // <-- Oh no!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

The fix

let private rec add’ (a : int) (ls : Interval list) =

match ls with

| [] -> [{ Min = a ; Max = a }]

| interval :: is ->

if (* contains *) then

ls

elif (* is 1 below *) then

elif (* is 1 above *) then

else

interval :: add’ a is

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

FsCheck is happy

Ok, passed 100 tests.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Serialisers: the hello-world of black-box testing

A serialiser is defined by a property:

Writing an object, then reading it in, gives the original object.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Signature of a serialiser

[<RequireQualifiedAccess>]

module FancyThing =

val toString : FancyThing -> string

val parse : string -> FancyThing option

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

Test the serialiser

[<Test>]

let roundTripTest () =

let property (t : FancyThing) : bool =

t

|> FancyThing.toString

|> FancyThing.parse

|> (=) (Some t)

Check.QuickThrowOnFailure property

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

What FsCheck gave us

Without needing to know anything about the implementation,
FsCheck was still able to produce useful tests!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

1 What’s the problem?
A program to test
Testing the program
But can I really trust myself?

2 Introduction to FsCheck
FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

3 Metatesting
Was the testing comprehensive?
Manipulating the cases

4 Stateful systems
Example

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Testing with FsCheck

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Metatesting

A technique you should use to make your testing more effective.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

How can we be sure we tested enough?

Recall the property:

let property (ints : int list) (toCheck : int) : bool =

create ints

|> IntervalSet.contains toCheck

|> (=) (List.contains doesContain ints)

By fluke (or my incompetence), FsCheck might never generate a
“yes, does contain” case.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

How can we be sure we tested enough?

Recall the property:

let property (ints : int list) (toCheck : int) : bool =

create ints

|> IntervalSet.contains toCheck

|> (=) (List.contains doesContain ints)

By fluke (or my incompetence), FsCheck might never generate a
“yes, does contain” case.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Gather metrics

F# is impure and side-effectful, so it’s extremely easy to gather
metrics.

(Instrumentation is an example where purity really does make
things harder!)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Gather metrics in the property

let property

(positives : int ref) (negatives : int ref)

(ints : int list)

(toCheck : int)

: bool

=

let contains = List.contains doesContain ints

if contains then

incr positives

else

incr negatives

create ints

|> IntervalSet.contains toCheck

|> (=) contains

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Invoke the augmented test

[<Test>]

let test () =

let pos = ref 0

let neg = ref 0

Check.QuickThrowOnFailure (property pos neg)

let pos = pos.Value

let neg = neg.Value

pos |> shouldBeGreaterThan 0

neg |> shouldBeGreaterThan 0

(float pos) / (float pos + float neg)

|> shouldBeGreaterThan 0.1

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

At least a tenth of the time, we want to be hitting positive cases,
but . . .

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

The test is a bit unreliable!

Expected: 0.1

Actual: 0.08

at FsUnitTyped.TopLevelOperators.shouldBeGreaterThan

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Manipulating the generated cases

We want to generate cases that aren’t so often “look for
something that’s not in the list”.
FsCheck gives us access to its generators for this purpose.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generators

We will have the property remain the same, but tell FsCheck to
generate different cases.
FsCheck has a number of built-in generators. It also has a
computation expression to manipulate generators.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator of bounded integers

let someInts : Gen<int> = Gen.choose (-100, 100)

Gen.sample 0 5 someInts

// output: [57; -24; 67; -14; 77]

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator of bounded even integers

let someInts : Gen<int> = Gen.choose (-100, 100)

let evenIntegers : Gen<int> = gen {

let! (anyInt : int) = someInt

return 2 * anyInt

}

Gen.sample 0 5 someInts

// output: [-190; -24; -194; -108; -112]

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Size

let integers : Gen<int list> =

Gen.sized (fun i ->

Gen.choose (-100, 100)

|> Gen.listOfLength i)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator that sometimes selects from a list

let integers : Gen<int list> = ...

let listAndElt : Gen<int * int list> = gen {

let! (list : int list) = integers

let genFromList = Gen.elements list

let genNotFromList =

Gen.choose (-100, 100)

|> Gen.filter (fun i -> not (List.contains i list))

let! number = Gen.oneOf [genFromList ; genNotFromList]

return (number, list)

}

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator that sometimes selects from a list

let integers : Gen<int list> = ...

let listAndElt : Gen<int * int list> = gen {

let! (list : int list) = integers

let genFromList = Gen.elements list

let genNotFromList =

Gen.choose (-100, 100)

|> Gen.filter (fun i -> not (List.contains i list))

let! number = Gen.oneOf [genFromList ; genNotFromList]

return (number, list)

}

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator that sometimes selects from a list

let integers : Gen<int list> = ...

let listAndElt : Gen<int * int list> = gen {

let! (list : int list) = integers

let genFromList = Gen.elements list

let genNotFromList =

Gen.choose (-100, 100)

|> Gen.filter (fun i -> not (List.contains i list))

let! number = Gen.oneOf [genFromList ; genNotFromList]

return (number, list)

}

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Generator that sometimes selects from a list

let integers : Gen<int list> = ...

let listAndElt : Gen<int * int list> = gen {

let! (list : int list) = integers

let genFromList = Gen.elements list

let genNotFromList =

Gen.choose (-100, 100)

|> Gen.filter (fun i -> not (List.contains i list))

let! number = Gen.oneOf [genFromList ; genNotFromList]

return (number, list)

}

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Using this generator

The generator makes pairs of an integer and a list, where the
integer is 50% likely to appear in the list.

[<Test>]

let test () =

let (pos, neg) = (ref 0), (ref 0)

(fun (list, elt) -> property pos neg elt list)

|> Prop.forAll (Arb.fromGen listAndElt)

|> Check.QuickThrowOnFailure

let pos = pos.Value |> float

let neg = neg.Value |> float

pos / (pos + neg)

|> shouldBeGreaterThan 0.1

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Was the testing comprehensive?
Manipulating the cases

Ok, passed 100 tests.

In fact we now have a positive case about 50% of the time.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

1 What’s the problem?
A program to test
Testing the program
But can I really trust myself?

2 Introduction to FsCheck
FsCheck’s view of the world
Back to the example
Advantages
What was the bug?
Serialisers

3 Metatesting
Was the testing comprehensive?
Manipulating the cases

4 Stateful systems
Example
Testing with FsCheck

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Stateful systems

What about state?
Key idea: describe what to do, and then do it.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Example: a stream

Simple model: array and pointer.

Starting state, pointer at index 0

72 69 76 76 79 32 87 . . .

Seek to index 2

72 69 76 76 79 32 87 . . .

Write 88 at the current index

72 69 88 76 79 32 87 . . .

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Imagine we can’t access the implementation, but we want to test it
anyway.

type Stream

[<RequireQualifiedAccess>]

module Stream =

val uninitialised : unit -> Stream

val read : Stream -> byte

val write : Stream -> byte -> unit

val seek : Stream -> int -> unit

val currentIndex : Stream -> int

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Some things to test

Write then read

Seek then get index

Write, seek away, seek back, read

FsCheck will do these, and do them well, but they are all quite
specific.
Isn’t the point of FsCheck to take this drudgery away from us?

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Obstacles to FsCheck

Why is FsCheck not helping here?

Testing a mutable object

No obvious immutable model to use

How to generate random streams?

Need shrinking not to interfere with itself

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Answer: describe what to do, and then do it!

c.f. initial algebras

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Answer: describe what to do, and then do it!

c.f. initial algebras

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Domain model

type StreamInteraction =

| Write of byte

| Read

| Seek of int

| CurrentIndex

type TestCase = StreamInteraction list

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

[<RequireQualifiedAccess>]

module TestCase =

let rec prepareStream

(s : Stream)

(instructions : TestCase)

=

for instruction in instructions do

match instructions with

| Write b ->

Stream.write s b

| Read ->

Stream.read s |> ignore

| Seek n ->

Stream.seek s n

| CurrentIndex ->

Stream.currentIndex s |> ignore

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Suddenly an immutable model appeared!

By constructing test cases through their descriptions. . .

we made an immutable model of the world.

FsCheck can generate these things completely automatically!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Immediately useful...

This can be used with no further modification to check a very
useful property:

[<Test>]

let doesNotCrash () =

let property (instructions : StreamInteraction list) =

let s = Stream.uninitialised ()

TestCase.prepareStream s instructions

true

Check.QuickThrowOnFailure (property)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

... and more useful with generalisation

But it really shines with just a little more work.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

The index only changes when you expect it to

1 Make a generator for all interactions that shouldn’t modify
the index

2 Generate a list of interactions

3 Generate a list of interactions which don’t modify the index

4 Concatenate

5 Execute, and assert that the index hasn’t changed.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

The gold standard: an immutable model

1 Define a map of “index” to “current value”

2 Interpret the interactions as acting on that map

3 Generate a list of interactions

4 Verify that the accessible output from the stream is
indistinguishable from the output of the map.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Aside: model-based testing

This has a name: model-based testing.

Checking behaviour relative to a more easily specified model.

MBT is a subset of property-based testing.
The property is “the system behaves like the model does”.
(Contrast: serialiser. Correctness defined by property, not model.)

FsCheck also has dedicated built-in support for MBT.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Sketch: Testing a UI

Test a UI by. . .

1 Identifying the actions you want to test;

2 Generating lists of actions;

3 Applying the actions;

4 Checking the final state is as expected given the actions.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Small properties, incremental addition

The UI example is good:

Enormous space of possible actions

Some actions very hard to test?

Don’t care uniformly about correctness

Don’t need to test everything!

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

A restricted search space

If you’re struggling to find properties, restrict the search space!
If you’re struggling to define correctness, restrict the search space!

Cut down to a small subset of user interactions, and you will find
properties.

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Example
Testing with FsCheck

Doge Analytics

(Here is where I waffle, because these slides are on public Github)

Patrick Stevens Property-Based Testing



What’s the problem?
Introduction to FsCheck

Metatesting
Stateful systems

Summary

Why you should use PBT

Property-based testing...

is easy

exists in many languages (Python, F#, Haskell, . . . )

can be added incrementally

is as comprehensive as you want

tests anything (black-box or otherwise)

Patrick Stevens Property-Based Testing


	What's the problem?
	A program to test
	Testing the program
	But can I really trust myself?

	Introduction to FsCheck
	FsCheck's view of the world
	Back to the example
	Advantages
	What was the bug?
	Serialisers

	Metatesting
	Was the testing comprehensive?
	Manipulating the cases

	Stateful systems
	Example
	Testing with FsCheck

	Summary

