FRIEDBERG-MUCHNIK THEOREM

PATRICK STEVENS, WITH TIP OF THE HAT TO DR THOMAS FORSTER

https://www.patrickstevens.co.uk/misc/FriedbergMuchnik/FriedbergMuchnik.pdf

1. INTRODUCTION

We consider Turing machines which query an oracle O: that is, they come equipped with an extra instruction "call the oracle with this input", where a call to the oracle is simply a test for membership in O.

We may supply different oracles to the same Turing machine, and potentially get different results: for example, the Turing machine which has as its only instruction "output the result of calling the oracle on my input" precisely mimics the oracle.

Recall that a set A is *semi-decidable* if there is a Turing machine T such that for all $n \in \mathbb{N}$, T(n) halts iff $n \in A$.

Theorem 1 (Friedberg-Muchnik theorem). There are semidecidable sets A and B such that for all Turing machines T which may query an oracle, the following fail to be equivalent:

(1) T-querying-B doesn't halt with output 0

(2) T-querying-B has input in A

and the following fail to be equivalent:

- (1) T-querying-A doesn't halt with output 0
- (2) T-querying-A has input in B

That is, we can find two semidecidable sets A and B such that neither allows a Turing machine to decide the other, where by "T decides A" we mean "T halts and outputs 0 iff its input is not in A, and it halts and outputs 1 iff its input is in A". (Equivalently, T is a machine which computes the characteristic function of A.)

2. Proof

We can enumerate all the Turing machines which call an oracle; write $[n]^X$ for the *n*th Turing machine in the enumeration, calling oracle X.

What would it mean for the Friedberg-Muchnik theorem to hold? We would be able to find e_n (resp. f_n) that witness in turn that the *n*th Turing machine doesn't manage to decide A in the presence of B (resp. B in the presence of A).

That is, it would be enough to show that:

Date: 5th February 2016.

Theorem 2. There are semidecidable sets A, B such that for all $n \in \mathbb{N}$:

- there is $e_n \in \mathbb{N}$ such that
 - $-e_n \in A$ but $[n]^B_{-}(e_n)$ halts with output 0, or
 - $-e_n \notin A$ but $[n]^B(e_n)$ fails to halt, or halts at something other than 0
 - there is $f_n \in \mathbb{N}$ such that
 - $-f_n \in B$ but $[n]^A(f_n)$ halts with output 0, or
 - $-f_n \notin B$ but $[n]^A(f_n)$ fails to halt, or halts at something other than 0

The way we are going to do this is as follows. We'll construct our A and B iteratively, starting from the empty set and only ever adding things in to our current attempts.

For each $n \in \mathbb{N}$, we can make an infinite list of "possible" witnesses: numbers which might eventually be our choice for e_n . We don't care what these guesses are at the moment, but we just insist that they be disjoint and sorted into increasing order. Write

$$G_i = \{g_1^{(i)}, g_2^{(i)}, \dots\}$$

for the set of possibilities for e_i , and

$$H_i = \{h_1^{(i)}, h_2^{(i)}, \dots\}$$

for the set of possibilities for f_i . (I emphasise again that we don't assume any properties of these numbers, other than that $g_m^{(i)}$ and $h_m^{(i)}$ are increasing with m, and that no $g_m^{(i)}, g_n^{(j)}, h_p^{(k)}, h_q^{(l)}$ are equal.)

Now, at time-step 0, we have no information about what's going to be in A and B, so let

$$A_0 = B_0 = \emptyset$$

Every G_i and H_i is looking for a witness among its members. We assign a priority order to them:

$$G_1 > H_1 > G_2 > H_2 > \dots$$

The idea is that the high-priority sets quickly decide on their witness, and the lowerpriority sets get to choose their witness subject to not being allowed to mess up any higher-priority set's decision.

At time-step t, we've already built A_{t-1}, B_{t-1} as our best guesses at A and B. We seek an e_i for any G_i which hasn't got one (for $1 \le i \le t$), and then we can work on finding f_i for the H_i next.

Run the machines $[i]^{B_{t-1}}$ for i = 1, 2, ..., t, for t steps each, each on input $g_1^{(i)}$. This will approximate $[i]^B$, because $B_{t-1} \subseteq B = \bigcup_{t=1}^{\infty} B_t$, but it is by no means exactly what we need yet.

• If our machine $[i]^{B_{t-1}}$ ever attempts to query its oracle on a value greater than $\max(B_{t-1})$, we declare that the machine crashes for this round, and sits out. Indeed, B_{t-1} is incomplete at this point as a reflection of B - we only have information about it up to $\max(B_{t-1})$ - so it would be useless to try and infer information about B from parts of B_{t-1} which are even bigger than that maximum.

- If $[i]^{B_{t-1}}$ halts at something other than 0, then it's no use to us: it can't possibly be a witness we can add to B, because such witnesses e_i must satisfy " $[i]^B(e_i)$ halts at 0". So G_i will sit out of this round.
- If $[i]^{B_{t-1}}$ fails to halt in the allotted t steps, it is likewise not something we can add to B, because we can't (yet) even prove that the machine *halts* on this input, let alone that it halts on 0. So G_i will again sit out of this round.
- But if $[i]^{B_{t-1}}$ halts and outputs 0 in the allotted t steps, we're in business: for some collection of i, we have found some things $(g_1^{(i)})$ that might serve as witnesses. Throw each of these into B_{t-1} to make B_t .

OK. Now G_i is happy, but remember we might have had a side-effect here, because if (for the sake of argument) G_1 had already decided on its witness during time-step t-1, it made that decision with reference to B_{t-1} and not with reference to B_t . The fact that $g_1^{(i)}$ is now in our *B*-guess may alter the computation that $[1]^{B_{t-1}}$ performed to decide on its witness. (This is because $[1]^{B_{t-1}}(e_1)$ is not in general equal to $[1]^{B_t}(e_1)$.)

How can we ensure that in fact G_1 's witness isn't broken? Well, [1] is a finite machine which we have run for a finite time, so it can only have asked the oracle for values up to some finite number β_1 before it halted. So if we can make sure we only ever added $g_n^{(i)}$ to B_{t-1} if it was above β_1 , then we haven't actually changed B from the point of view of [1]. Even after B_{t-1} becomes B_t , the computation $[1]^{B_{t-1}}$ performs is exactly the same as the computation $[1]^{B_t}$ performs, because the oracles are the same on all points [1] might query.

Therefore, after adding something from G_i to make B_t , we need to delete all numbers below β_i from all lower-priority G_j and H_j . (This is easy to do because of our stipulation that the G_j be listed with elements in ascending order.) That way, no G_j will never even consider any element that breaks a higher-priority G_i .

Once we've found the G-witnesses at time-step t, we can find the H-witnesses in exactly the same way; and finally, we move on to time-step t + 1.

2.1. **Problem.** This procedure works pretty well, but there's a problem with it. You might like to meditate on this for a few minutes, because it's revealed in the next paragraph.

The problem is simply that while no lower-priority entry can break a higher-priority one, the reverse might happen! It might be that G_1, G_2, G_3 take ten steps of execution before halting, while G_4 halts after just one step and so decides on its witness immediately (that is, at time t = 4, as opposed to G_1 's t = 10). Subsequently, G_1 will decide on its witness, and the act of throwing its witness into B might break G_4 's choice. Remember that G_4 only eliminated breaking-values from *lower*-priority G_j , not the higher-priority G_1 . (Allowing it to eliminate breaking-values from higher-priority sets could cause the entire protocol to enter an infinite loop, with G_1 and G_4 each invalidating the results of the other on successive time-steps.)

However, this isn't actually too much of a problem. Since G_1 can only ever decide on its witness once (being the highest-priority), that means H_1 will only ever need to decide twice; G_2 only ever needs to decide at most four times (it could be first to pick its witness, then H_1 overrules it, then it picks again, then G_1 overrules it and H_1 , then it picks again, then H_1 overrules it, and finally it picks again). In general, the *i*th element of the priority order can only be overruled $2^i - 1$ times.

So if G_i is overruled, we can just keep churning through the procedure, chucking more and more elements into B; G_i can only be overruled finitely many times, and it has infinitely many elements in its list to play with, so eventually it will work its way into a position when it can never be overruled.

2.2. Final problem. OK, this works fine if every G_i eventually finds a witness. But there's another case: G_1 may never find a witness. For example, $[1]^{B_t}(g_1^{(1)})$ may never halt, or it may halt but output the value 1 instead of 0 (so the protocol sees it as "uninteresting" and just repeatedly tells G_1 to sit out of the round).

But remember that we're trying to construct a witness that a certain equivalence fails, and so far we've been constructing witnesses that it fails in one of its directions. (Remember: the equivalence we want to fail is that T^B halts with 0 iff it has input not in A.) We could still win by finding e_1 such that $[1]^B(e_1)$ fails to halt at 0 despite not being in A. And look! We've precisely got one of those elements, and it's $g_1^{(1)}$.

3. Summary

The output of this procedure is a pair of sets

$$A = \bigcup_{t=1}^{\infty} A_t, B = \bigcup_{t=1}^{\infty} B_t$$

which are semi-decidable (because we built them as a union of finite sets A_t, B_t). For each Turing machine $[i]^X$, we have a witness e_n , such that:

- either $[i]^B(e_n)$ halts with output 0 and $e_n \in A$, or
- $[i]^B(e_n)$ fails to halt, or halts with output not equal to 0, and $e_n \notin A$.

(This can be proved by induction: if e_n is a witness at time t and it is never overruled, then it remains a witness when we pass to B, because by construction its computation doesn't change on passing to B.)

That is, no Turing machine $[i]^B$ decides A.

Likewise, no Turing machine $[i]^A$ decides B.