
EMBEDDING A MODULAR MACHINE INTO A GROUP

PATRICK STEVENS

https://www.patrickstevens.co.uk/misc/ModularMachines/EmbedMMIntoTuringMachine.pdf

1. Introduction

This document was born from a set of lectures I attended, given by Dr Maurice Chiodo
in his half of the Part III Maths course Infinite Groups and Decision Problems, which he
lectured jointly with Dr Jack Button in 2016. The treatment of modular machines was
a bit heavy in text, and they are actually fairly intuitive objects, so I decided to expand
on them here.

A warning for those who are following the official course notes: I accidentally inter-
changed L and R in my definition of a modular machine below, relative to the official
notes. It doesn’t change any of the ideas, and is just a different labelling convention, but
by the time it was pointed out to me, most of the document was written, and I can’t be
bothered to fix it now. Use at your own risk.

Mistakes in this article are due entirely to me; thanks to Joshua Hunt and Daniel
Zheng for catching some before this went to press.

2. What is a modular machine?

A modular machine is a Turing-equivalent form of computation. They operate on two
tapes, which are each bounded at one end. Each cell of a tape may be filled with an
integer from 0 to m− 1 inclusive; this is where the name “modular” comes from.

a1
a2
a3
...

an−1
an

b1
b2
...

bk−1
bk

The machine is considered to have a “head” which is looking at the bottom two cells
(which are on the edge of the tape); in this instance, the head is looking at an and bk.
The machine also has a list of instructions, of the form

(α, β, (x, y), L)
or

(α, β, (x, y), R)
These instructions are constantly active, and the machine just does whichever it can
at each stage. To ensure that the machine only has one thing it can do at any time,

Date: 21st April 2016.
1

https://www.patrickstevens.co.uk/misc/ModularMachines/EmbedMMIntoTuringMachine.pdf


2 PATRICK STEVENS

we insist any α, β may only have one instruction in which they appear in the first two
places. For example, if (1, 2, (3, 3), L) is an instruction, then (1, 2, (5, 2), R) cannot also
be an instruction.

Since α, β will appear on the tape during execution, we require that 0 ≤ α, β < m;
since x, y will be written onto the tape during execution, we require that 0 ≤ x, y < m.

When the head sees entries (α = an, β = bk) and it has the instruction

(an, bk, (x, y), L)

it executes the following procedure:

(1) Shift the left-hand tape up one:

a1
a2
a3
...

an−1
an

b1
b2
...

bk−1
bk

(2) Write x, y into the left-hand tape’s bottom cells:

a1
a2
a3
...

an−1
x
y

b1
b2
...

bk−1
bk

(3) Shift the right-hand tape down one:

a1
a2
a3
...

an−1
x
y

b1
b2
...

bk−1

If, instead, the instruction was

(an, bk, (x, y), R)



EMBEDDING A MODULAR MACHINE INTO A GROUP 3

then the same procedure would be carried out, but with right and left interchanged.
This would result in the final state

a1
a2
a3
...

an−1

b1
b2
...

bk−1
x
y

Remark. The very convenient thing about modular machines is that they can be easily
coded into numbers. All the state can be tracked with just two numbers:

(A,B) := (
n∑
i=0

aim
n−i,

k∑
i=0

bim
i)

and, for instance, the operation (α, β, (x, y), L) produces

([A− (A mod m)]m+ xm+ y, [B − (B mod m)]/m)

We could even collapse (x, y) into a single integer xm+ y which is less than m2.

3. Turing equivalence

We will take our Turing machines to be in “quintuple form”: they consist of a list of
instructions of the form

(q, a, a′, q′, L/R)

where:
• q is the current state
• a is the symbol under the head
• a′ is the symbol to write to the tape
• q′ is the state to move to
• L/R is the direction the head moves after this instruction executes.

Note that the machine always writes and always moves on every execution step.
We may implement a Turing machine as a modular machine as follows.

Definition 1 (Instantaneous description). An instantaneous description of a Turing
machine is a string of the form

s1s2 . . . skqask+2 . . . sr

where si are the symbols written on the alphabet, q is the state the machine is
currently in, and a is the symbol under the head. It captures completely the state of
execution at a given instant in time.



4 PATRICK STEVENS

We will implement the instantaneous description s1s2 . . . skqask+2 . . . sr as both of two
possible modular machine states:

s1
s2
. . .
sk−1
sk
q

sr
sr−1
. . .
sk+2
a

or
s1
s2
. . .
sk−1
sk
a

sr
sr−1
. . .
sk+2
q

It will soon become clear why we want to be able to use both these states. While
the modular machine can only ever occupy one of the states, the Turing machine it’s
emulating will be in the same state whichever of the two the modular machine happens
to be in.

Define the modulus m to be the number of Turing-machine states, plus the number
of Turing-machine symbols, plus 1; this is just to make sure we have plenty of symbols
to work with, and can store all the information we need in any given cell of the tape.

How can we express a Turing-machine instruction? Remember, they are one of the
two forms

• (q, a, a′, q′, L), which would convert

s1s2 . . . skqask+2 . . . sr

to
s1s2 . . . sk−1q

′ska
′sk+2 . . . sr

• (q, a, a′, q′, R), which would convert

s1s2 . . . skqask+2 . . . sr

to
s1s2 . . . ska

′qsk+2 . . . sr

Therefore, taking our correspondence between Turing-machine instantaneous descrip-
tions and internal states of a modular machine, we need the instruction (q, a, a′, q′, L) to
take

s1
s2
. . .
sk−1
sk
q

sr
sr−1
. . .
sk+2
a

7→

s1
s2
. . .
sk−1
q′

sr
sr−1
. . .
sk+2
a′

sk



EMBEDDING A MODULAR MACHINE INTO A GROUP 5

or to

s1
s2
. . .
sk−1
sk

sr
sr−1
. . .
sk+2
a′

q′

Now it is clear why we needed the two possible representations of a single Turing-
machine instantaneous description: only the second of the above transitions is easy to
implement in the modular machine, but it has swapped q from the left-hand register to
the right-hand register. This is perfectly kosher, but only because we were careful to state
that the current-state and current-symbol letters were interchangeable in the modular
machine. It can be performed using the modular machine instruction (q, a, (a′, q′), R).

Similarly, since we might have started this whole affair with the other representation
of the TM instantaneous description, we need to do the same with

s1
s2
. . .
sk−1
sk
a

sr
sr−1
. . .
sk+2
q

which, by modular machine instruction (a, q, (a′, q′), R) is taken to

s1
s2
. . .
sk−1
sk

sr
sr−1
. . .
sk+2
a′

q′

Notice, as an aside, that the Turing-machine head was moving left, and the modular-
machine “head” symbol q′ has ended up on the right-hand tape whichever of the two
representations of the instantaneous description we used.

We can do the same for the Turing machine instructions which involve moving right-
wards.

4. Summary

If we take our Turing machine states (q, a, a′, q′, L/R) and, for each one, create a pair
of modular machine instructions (a, q, (a′, q′), L/R) and (q, a, (a′, q′), L/R), we end up
with a modular machine that precisely emulates the Turing machine. We could represent
the pair (a′, q′) as a single integer which is between 0 and m2: namely, by taking a′m+q′.
This makes the strings a bit shorter, but not as comprehensible.



6 PATRICK STEVENS

Definition 2 (Halting set). We define the “halting set” of a modular machine to be
the collection of states of the tape from which, when the machine runs, we eventually
end up with both tapes zeroed out. For this to be a sensible definition, we want the
machine not to have an instruction corresponding to head-states (0, 0), so that the
machine really does stop eventually if it started in a halting state.

5. Embedding a modular machine into a group

What we seek now is a way to embed a MM into a group. A MM has two pieces of
state: the left-hand tape and the right-hand tape. These can be easily coded as integers.

5.1. How could we apply a machine instruction? Let’s imagine we have a way
of representing the state (a, b) as a group word in some group: t(a, b). What we now
want is a way of applying a transformation to obtain the different word t(a′, b′) which
corresponds to executing the MM instruction (α, β, (x, y), L/R). A very good way of
applying reversible transformations is to conjugate, so let’s add lots of letters to the
group: one ri for each instruction (α, β, (x, y), L), and one si for each (α, β, (x, y), R).
Conjugating by the letter ri will apply the ith L-instruction.

The required effect is

rit(α+mu, β +mv)r−1
i = t(xm+ y +m2u, v)

5.2. How do we store the states? The next idea is that since our states are merely
integers, we might store them as exponents of a group generator: xayb where a is the
left-hand tape and b the right-hand. In this scheme, it’ll be easier if we allow x and y
to commute, since all we care about is their exponents.

Now, it will be convenient to introduce a third letter, t, which will let us store sepa-
rately the “head” and the “body” of the tapes. Our storing scheme will be

ymvxmu(xαyβty−βx−α)x−muy−mv

which we will denote t(α + mu, β + mv), corresponding to the tape which has α, β as
the two heads, and then u, v as the data on the rest of the tape.

So we define
K := ⟨x, y, t | xy = yx⟩

Remark. Notice that the only words in K := ⟨x, y, t | xy = yx⟩ which can be expressed
in this form are the words yaxbtx−by−a. Therefore it makes sense to define a subgroup

T := ⟨t(r, s) : r, s ∈ Z⟩

which consists of “all possible machine states”.

5.3. How do the machine instructions work? How does ri act, then? (α, β, (p, q), L)
needs to take

t(α+mu, β +mv) = ymvxmu(xαyβty−βx−α)x−muy−mv

to
t(pm+ q +m2u, v′m+ ν) = yv

′mx(um+p)m(xqyνty−νx−q)x−(um+p)my−v′m



EMBEDDING A MODULAR MACHINE INTO A GROUP 7

where we are writing v = v′m+ ν. More concretely,

yv
′m2+νmxmu(xαyβty−βx−α)x−muy−v′m2−νm

maps to
yv

′mxum
2+pm(xqyνty−νx−q)x−um2−pmy−v′m

Notice that this is exactly performed by the map xm 7→ xm
2
, ym 7→ y, t(α, β) 7→

t(q + pm, 0). How can we make that well-defined (since we clearly can’t send ym to y
without messing up the map of t(α, β))? The trick is to forget that we’re working with
x, y, t, and start working with t(α, β), xm, yn as atomic blocks.

Define a new subgroup

KM,N
α,β := ⟨t(α, β), xM , yN ⟩ ≤ K

Then the map
ϕi : t(α, β) 7→ t(q + pm, 0), xm 7→ xm

2
, ym 7→ y

would do what we want. What is the domain and range of that map? If we view it as
being Km,m

α,β → Km2,0
q+pm,1, then it’s actually an isomorphism: it’s just matching up the

generators of the respective groups.
OK, we have a map which we want to apply whenever we see riwr−1

i . The way we
can do that is to create an HNN extension: take K∗ϕi

with stable letter ri.
We can do the whole lot again with ψi corresponding to siws−1

i , which performs an
R instruction (where ϕ performed an L instruction).

5.4. How do we turn this all into a group? We’ve got all these groups floating
around; to specialise to a group in which we can only be dealing with machine states,
consider

T ′
M := ⟨t(α, β) : (α, β) ∈ H0(M); ri : i ∈ I; sj : j ∈ J⟩ ≤ K∗ϕi;ψj

where H0 refers to the halting set of the modular machine M.
If we take an element t(α, β) of T ′

M which contains no ri or sj , it reduces to the word
t in this group if and only if, when applying ri’s and sj ’s, we end up in the halting
set of the modular machine: the HNN extension has quotiented out by the relation
“conjugating by ri applies effect ϕi, which moves the modular machine according to the
ith L-instruction”. The word t is precisely symbolising the empty tape. Of course, we
could have lots of unused instructions or parts of instructions floating around: the group
word rit still has empty tape, so is still a halting state.

5.5. Subgroup membership to word problem. We have constructed a subgroup
⟨t⟩′ := ⟨t, ri, sj⟩ such that (α, β) is a halting state of the modular machine if and only if
t(α, β) lies in that subgroup. Using an HNN extension, we can make a group where we
just need to check equality of words: create the group

GM := ⟨K∗ϕi,ψj
; k | khk−1 = h ∀h ∈ ⟨t⟩′⟩

Then conjugating an element by k does nothing precisely when that element was in ⟨t⟩′:
that is, precisely when the modular machine halts from that starting state.



8 PATRICK STEVENS

5.6. What have we missed out? There are many checks to be done along the way.
Our HNN extensions need to be well-defined. The ϕi, ψj need to be iso. GM is in fact
finitely presented, but we need to show that.

However, once those checks are done, we have produced an explicit recipe for con-
structing a finitely presented group which can simulate a given arbitrary modular ma-
chine.

6. Higman’s construction

It turns out that, somewhat shockingly, there is a beautiful way to use the above to
embed a recursively-presented group C = ⟨X | R⟩ into a finitely-presented group. Think
of the earlier construction as telling us how to execute a Turing machine inside a group.
Then, morally, we do the following.

(1) Take the machine that halts precisely on members of R;
(2) Embed it into a group G;
(3) Glue G onto C = ⟨X | R⟩ in such a way that we can use the machine-part, G,

to decide which reductions to make (rather than querying the infinite set R).
Of course, the construction is rather complicated, but the upshot is that the finite

presentation which defines G can be used to capture all the information that lies in the
infinite relator-set R.

6.1. General approach. We will make a (large!) group whose elements include what
I will call “collections”, which have the following structure:

(1) machine state (for those following the course notes, this is KM in Step 13 of
Construction 11.2)

(2) word under consideration (this is ⟨b1, . . . , bn | ·⟩)
(3) group element that word corresponds to (this is C)
(4) marker (this is d)

The group ⟨X | R⟩ embeds in the third component (“group element that word cor-
responds to”). The “machine state” section will be implemented as Kϕi;ψj

from earlier
(which, recall, was finitely presented). The “word under consideration” will be how
we extract information from the “machine state”. The “marker” serves no purpose for
interpretation, but it turns out to be an important fiddly detail in the construction.

6.2. Construction. We are going to use a whole lot of HNN extensions to manipulate
collections.

6.2.1. Which modular machine to use?
cin
. . .
ci2
ci1

0
. . .
0
0

Take a modular machine such that, if we start the tape with the above state, we halt with
an empty tape if and only if ci1 . . . cin is in R. (Recall that our recursive presentation
is C = ⟨X | R⟩, and this is the group we want to embed.) It is possible to do this (for
those following the course notes, this is steps 1 through 5): symmetrise the generators



EMBEDDING A MODULAR MACHINE INTO A GROUP 9

if necessary so that each generator c ∈ X has an inverse c−1 and a relator cc−1 = e.
Then make a Turing machine that enumerates the trivial words in this new presentation
(which is, in spirit, the same as the old presentation; it certainly defines the same group).
Convert that Turing machine into a modular machine, where each c or c−1 of the group
corresponds to a cell-state ac or ac−1 .

Once we’ve got that modular machine, we can embed it into a group using what’s
happened already, although we’re actually only going to need

KM := K∗ϕi,ψj

which, recall, is the group which holds an MM state as the word xαyβty−βx−α which
can also have the MM instructions directly applied to it, by conjugating with the stable
letters ri, sj respectively to apply the ith Left-instruction or jth Right-instruction.

6.2.2. Creating a collection. We’re only interested in certain modular machine states:
namely, those corresponding to t(α, 0) for certain α. (Recall that t(α, β) is our notation
for how the group KM stores the current state (α, β) of the MM.) That is, we’re only
interested in how the modular machine behaves when we start it off with input α =∑r
i=0 cki

mi, say: equivalently, when we ask it the question “Is ck0 . . . ckr in the relating
set of C?”.

So, while other MM-states appear encoded in our KM—for example, the state corre-
sponding to “starting with 5 on the left-hand tape and 2 on the right-hand, perform the
fourth left-instruction in the list of possible instructions”—our remaining manipulations
to the group will all refer to t(α, 0) directly. That is, our remaining manipulations will
ignore non-interesting MM states.

Given an MM state t(α, 0), we unpack it into a collection by conjugating with a new
stable letter, p, and taking an HNN extension. (In the course notes, this is steps 17 and
18.) The extension will take t(α, 0) and unpack it into the word

[t(α, 0), wα(b)]
where wα(b) simply means “take the word which is currently loaded into the MM’s
memory, as its left-hand tape where the right-hand tape is 0, and write it down with b’s
in the abstract”.

Example. If α = c3 + c7m+ c1m
2, we would have wα(b) = b3b7b1, a word in the abstract

group ⟨b1, . . . , bn | ·⟩. I’m playing fast and loose with the ordering here; I may mean
b1b7b3, but I can’t be bothered to check which is right.

To recap, the unpacked word [t(α, 0), wα(b)] has two components so far, then: the
modular machine state t(α, 0), and an abstract statement wα(b) of the word we’re asking
about. I’ll add a third component: the “marker” letter d, so our unpacked word actually
has three components and looks like

[t(α, 0), wα(b), d]
We obtained the unpacked word by conjugating t(α, 0) by a new stable letter p, and
taking an HNN extension which adds the relators

pt(α, 0)p−1 = t(α, 0)wα(b)d
for each α.



10 PATRICK STEVENS

For reasons which will be important later, I added the d at this point: an end-marker,
sitting after the wα(b). I can’t motivate its presence in this section, but eventually we
will start appending things to wα(b), and it will become vital to know where the word
ends. We use the marker d for that.

Remark. This is an awful lot of relators. Infinitely many, in fact! Don’t panic; we
will eventually show that we can actually replace most of them with a finite number of
relators. We haven’t actually tied the behaviour of the machine to the manipulation of
collections yet; only expanded a machine into a collection.

Later on, we will add one more component (our last one) to the collection. It will be
a bona fide word on C’s generators, and it will be the word which α represents. We can
do this by insisting that bicj = cjbi in general, and by doing another HNN extension,
which will have the effect of taking bj to bjcj . That is, b3b2 7→ b3c3b2c2 = b3b2c3c2; then
we view the b chunk and the c chunk as being distinct, forming the second and third
components of our four-component collection respectively.

Formally, in a little while we will add a stable letter V and add the relators that
V bjV

−1 = bjcj (and that V aV −1 = a for most of the other possible a – for example, for
a = t or a = ri). In the course notes, ψ+ adds this component to the collection.

So our final collection will be
[t(α, 0), wα(b), wα(c), d]

However, we don’t bother adding this yet. In essence, the original three components
of the collection are where the magic happens; but because wα(b) is a “purely syntactic”
readout of the machine t(α, 0), we won’t actually have an embedded copy of C in the
group unless we add one. So as the last step of our entire construction, we will put in
this fourth component that “evaluates the word wα(b) as an element of C”.

6.2.3. Tying the wα(b)-component to the machine component. The real magic happens
at this point. Everything we’ve done so far has added only finitely many relators, except

pt(α, 0)p−1 = t(α, 0)wα(b)d
Recall that this was unpacking a machine (with a word loaded onto its tape) into a pair
of (the machine, the word).

How can we specify this with only finite amounts of information? Well, the word is
taken over a finite alphabet b1, . . . , bn, so we’d be done if, starting from an empty-tape
machine, we had a way of loading a word onto the tape of the “machine” component
of the collection one letter at a time, and at the same time appending the word to the
“word” component of the collection one letter at a time. This will involve reaching down
into the implementation of the machine, which (recall) is currently being held as one
component of a collection; the collection itself is just a word over a particular alphabet
which we haven’t yet specified (we can extract it at the end).

Define a bunch of HNN extensions, one for each bi, taking t(α, 0) to t(αm+ ci, 0) and
wα(b) to wα(b) · bi. Here is where we need d: we need to know where the end of wα(b)
is, so that we can append something to it.

Formally, define stable letters Ui such that:
• UibrU

−1
i = br (dealing with the wα(b)-chunk)



EMBEDDING A MODULAR MACHINE INTO A GROUP 11

• UidU
−1
i = bid (appending bi to the abstract word)

• UixU
−1
i = xm (shifting the left-hand tape of the machine up by one, to make

room for the new symbol)
• UitU

−1
i = xitx−i (filling that new empty slot with the required state)

The miracle of what we have just done is that we can implement all the infinitely-
many pt(α, 0)p−1 = t(α, 0)wα(b)d in terms of these finitely-many new relators! To obtain
the effect of pt(α, 0)p−1 where α represents the word c3c6, just conjugate the collection
ptp−1 = [t(0, 0), empty word, d] in turn by U3 and U6.

6.2.4. Adding an embedded copy of C. So far, we have been dealing syntactically with
symbols bi which represent the generators of C. But we haven’t actually got an embedded
copy of C yet, or at least we haven’t obviously got one. What we need is a way of
evaluating wα(b) to obtain wα(c) ∈ C.

That’s easy, though: do one HNN extension that will have the effect of taking bi to
bici, and insist that the bi, cj all commute.

Formally, add a single stable letter V such that:
• V bjV

−1 = bjcj
• V dV −1 = d (so the marker is unchanged)
• V tV −1 = t, V riV −1 = ri, V sjV −1 = sj (so the KM component is unchanged)
• V pV −1 = p (so that V ’s unpacking won’t do anything until we have explicitly

performed p’s unpacking)
and add (finitely many) relators bicj = cjbi. (This HNN extension is ψ+ in the course
notes.)

Remark. One might wonder why we don’t need V to commute with the Uj (which,
recall, load letters onto the tape of the machine). The answer is that we only want to do
the unpacking right at the end of the procedure: at the “load letters onto tape” stage,
we don’t do any unpacking. Therefore, in our final uber-group which encodes all of
Higman’s construction (whose elements are words which are collections), there may be
strange fragments of instructions floating around, like in V t(α, 0)wα(b)d where V is “half
of an instruction”. We just let these hang around, and ignore them: Britton’s lemma on
HNN extensions tells us that none of these are equal to words in which the instructions
have all been fully executed (that is, in which no V ’s appear). While all this junk is still
sitting around in the group, it doesn’t interfere with the interesting part of the group.

The situation is analogous to the embedding of a modular machine into a group, where
we ignore any chunks of half-instruction like rixaybty−bx−a (where ri is an un-completed
instruction) because they don’t interfere with what we’re really doing.

Consider that a word wα evaluates in C to something trivial if and only if the mod-
ular machine halts in the zero state from t(α, 0). (That’s how we defined the modular
machine.) The modular machine halts in the zero state from t(α, 0) if and only if con-
jugating by ri, sj in some order causes t(α, 0) to be taken to the single letter t. That is,
if and only if the machine, starting from state t(α, 0), eventually reaches the state that
is the single letter t.



12 PATRICK STEVENS

But because V commutes with the ri and sj (that is, the “instructions” in KM telling
it to execute the appropiate machine instructions), we have

risjV t(α, 0)V −1s−jr−i = V risjt(α, 0)s−jr−iV −1 = V t(0, 0)V −1 = t

if the machine halts on the zero state through applying instructions ri, sj .
That is,

V t(α, 0)V −1 = r−is−jtrisj

which, since the machine is deterministic (and we’re undoing the instructions that took
us from t(α, 0) to t(0, 0)), is t(α, 0).

Otherwise, if the machine doesn’t halt through ri, sj , there are some interfering x’s
left at the end (we end up with V t(a, b)V −1 = V xiyjty−jx−iV −1) so V can’t cancel.

The upshot is that conjugating the three-element collection [KM, wα(b), d] by V un-
packs into a collection

[KM, wα(b), wα(c), d]
without any V ’s if and only if wα(c) is trivial as a member of C.

Example. Suppose
C = Z2 = ⟨c1 | c2

1 = e⟩
Expand the presentation to

⟨c1, c2 | c1c2 = e, c2
1 = e, c2

1c
2
2 = e, . . . ⟩

where the ellipsis indicates every trivial word.
Let us examine c2

1, which is trivial; it is coded into the machine-component of the
group as t(1 +m, 0).

There is a sequence of ri, sj such that conjugating t(1+m, 0) by risj results in t(0, 0) =
t. To make this more readable, let’s say risj are precisely the two instructions we need
to use to do this.

Now, V t(1 +m, 0)V −1 is equal to

V risjt(0, 0)s−1
j r−1

u V −1

But V commutes with all those terms, so it is just t(1 +m, 0).
Hence V t(1 +m, 0)b2

1dV
−1 is

t(1 +m, 0)b2
1c

2
1d

because of the effect of V on the bi terms.
On the other hand, V t(1 +m, 0)b2

1dV
−1 is

V pt(1 +m, 0)p−1V −1

and V commutes with p, so it comes to

pt(1 +m, 0)p−1 = t(1 +m, 0)b2
1d

Therefore
t(1 +m, 0)b2

1c
2
1d = t(1 +m, 0)b2

1d

so c2
1 is trivial.



EMBEDDING A MODULAR MACHINE INTO A GROUP 13

6.3. List of generators. As a recap, here is a list of all the relators (HNN or otherwise)
of the uber-group we have made.

• rit(α, β)r−1
i = t(new machine state) for each L-machine-instruction

• sjt(α, β)s−1
j = t(new machine state) for each R-machine instruction

• pt(α, 0)p−1 = t(α, 0)wα(b)d, the instructions for unpacking a machine into a
machine with its word (all these can be made by other instructions)

• ptp−1 = td (a single special case of the above)
• UibrU

−1
i = br (when loading i onto the tape, deals with the wα(b)-chunk)

• UidU
−1
i = bid (when loading i onto the tape, appends bi to the abstract word)

• UixU
−1
i = xm (when loading i onto the tape, shift the left-hand tape of the

machine up by one, to make room for the new symbol)
• UitU

−1
i = xitx−i (filling that new empty slot with the required state)

• V bjV
−1 = bjcj (unpacking a syntactic word into its represented element)

• V dV −1 = d
• V tV −1 = t, V riV −1 = ri, V sjV −1 = sj (so the KM component is unchanged)
• V pV −1 = p
• bicj = cjbi

There are finitely many of all of these, except the pt(α, 0)p−1 = t(α, 0)wα(b)d which
can be made by other instructions.


	1. Introduction
	2. What is a modular machine?
	3. Turing equivalence
	4. Summary
	5. Embedding a modular machine into a group
	5.1. How could we apply a machine instruction?
	5.2. How do we store the states?
	5.3. How do the machine instructions work?
	5.4. How do we turn this all into a group?
	5.5. Subgroup membership to word problem
	5.6. What have we missed out?

	6. Higman's construction
	6.1. General approach
	6.2. Construction
	6.3. List of generators


