
NON-STANDARD ANALYSIS

PATRICK STEVENS

https://www.patrickstevens.co.uk/misc/NonstandardAnalysis/NonstandardAnalysisPartIII.pdf

Licence: CC BY-SA https://creativecommons.org/licenses/by-sa/4.0/. You are free to share and adapt this work for

any purpose, even commercially, as long as you attribute it, indicating which changes were made, without suggesting

that the licensor endorses you or your use. You must distribute derivative works under the same license as the original.

Date: Composed from October 2015 to April 2016. Released on 15th June 2016.
Supervised by Dr Thomas Forster for the essay component of Part III of the Cambridge Mathematical

Tripos.

1

https://www.patrickstevens.co.uk/misc/NonstandardAnalysis/NonstandardAnalysisPartIII.pdf
https://creativecommons.org/licenses/by-sa/4.0/


2 PATRICK STEVENS

Contents

1. What is non-standard analysis? 2
2. Basic definitions 3
3. Derivatives 5
3.1. The chain rule 7
4. Continuity 8
4.1. Uniform continuity 9
4.2. Compactness 9
5. Hypernaturals 10
5.1. Internal sets 10
5.2. Hypersequences 12
5.3. Lattices 13
5.4. Hyper-sums 15
6. Integration 15
7. Series 20
8. More general topological ideas 24
9. Measure theory 27
9.1. Comprehensiveness 29
9.2. Alternative characterisation of Loeb measurability 29
9.3. Lebesgue measure via Loeb measure 32
10. Brownian motion 39
References 43

1. What is non-standard analysis?

Non-standard analysis is the study of a model of the reals in which there are infinites-
imals: there is some ε > 0 such that, for all “standard” reals x, we have ε < x. We shall
follow Pétry [2] in assuming the existence of a “field of hyperreals”: ∗R, an ordered field
which extends R’s order structure and inherits its multiplicative structure. The key fact
about ∗R which we shall also impose is the Transfer Principle of Definition 1.1. The
truth of the transfer principle follows from  Los’s Theorem (see Theorem 4.3 of Davis [3]).
However, this essay aims for a treatment of the analysis involved, rather than getting
bogged down in foundational details, so we will not prove it here.

Definition 1.1 (Transfer Principle). Let ϕ be a first-order sentence in the language
of the totally ordered field R. (That is, ϕ quantifies only over real numbers, not over
subsets of the reals.) Then ϕ is true in R if and only if ∗ϕ is true in ∗R, where ∗ϕ
is obtained by replacing all quantifiers (∀x ∈ R) with (∀x ∈ ∗R) and (∃x ∈ R) with
(∃x ∈ ∗R).

This version of the transfer principle is not actually the strongest possible; we will
return to this in Section 5.1, where we examine certain cases under which we may
quantify over sets.
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There is a simpler but more imprecise form, which we state here for motivation in the
form given by Pétry:

Definition 1.2 (Transfer Principle, imprecise form). If two (first-order definable)
systems of equations are equivalent in R, then they are equivalent in ∗R. Moreover,
every (first-order definable) function f : R → R extends to a function ∗f : ∗R → ∗R
such that ∗f |R = f .

In the first sections of this essay, whenever we invoke the transfer principle, all the
functions and sets we will consider shall be first-order definable. Therefore this formu-
lation suffices for the moment.

Example. To give an example of the transfer principle in action, consider the two equiv-
alent sets

{x ∈ R : x2 > 7}; {x ∈ R : x >
√

7 ∨ −x >
√

7}
We may define 7 in a first-order way, as 1 + 1 + 1 + 1 + 1 + 1 + 1 (recalling that we are

working in the language of the totally ordered field R). Similarly, −1 has the following
first-order description:

(∃x ∈ R)(x+ 1 = 0)

The square-root function may be expressed in a first-order way:

(∀x ≥ 0)(∃y ≥ 0)(y2 = x)

so (imprecisely)
√

: x 7→
√
x extends to a function ∗√ : ∗R → ∗R, and (formally) ∗√ is

described by

(∀x ∈ ∗R)(x ≥ 0 → (∃y ∈ ∗R)([y ≥ 0] ∧ [y × y = x]))

which is a true statement of ∗R by the transfer principle.
Then viewing 7 and −1 as elements of ∗R, the transfer principle states (imprecisely)

that

{x ∈ ∗R : x2 > 7}; {x ∈ ∗R : x >
∗√

7 ∨ −x > ∗√
7}

are equivalent sets in ∗R. Formally,

(∀x ∈ R)(x× x > 7 ↔ [x >
√

7] ∨ [x < −1 ×
√

7])

and so by transfer,

(∀x ∈ ∗R)(x× x > 7 ↔ [x >
∗√

7] ∨ [x < −1 × ∗√
7])

Therefore, the inequality x2 > 7 has solutions x >
√

7 and x < −
√

7 whether we are
working in R or ∗R.

Remark (Existence of ∗R). Why are we justified in assuming the existence of ∗R? The
spirit in which we do so is akin to the fact that we teach arithmetic while perfectly
content not to define N rigorously, but simply to recognise its existence. To obtain an
explicit construction, we may use ultrapowers (see Robinson [1]); we will sketch this
approach in Section 5.1 of this essay. Alternatively, we may understand the essence
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of why a model exists via the Compactness Theorem of first-order logic. Adjoining a
symbol ε to the language of the reals, and adding axioms that

{ε > 0; ε <
1

n
: n ∈ N}

produces a system which has a model by compactness. Such a model contains an infin-
itesimal ε.

2. Basic definitions

We consider a non-standard model ∗R of the reals. The key difference between ∗R
and R is that every finite r ∈ ∗R has a standard part, denoted st(r), and a non-standard
part. The standard part is a standard real (that is, a member of R) which is “infinitely
close” to r: that is, r − st(r) is infinitesimal.

We write r ≃ s for the relationship “r − s is infinitesimal”: explicitly, r ≃ s iff either
r = s or for every ε ∈ R with ε > 0, we have{

0 < r − s < ε if r > s

0 < s− r < ε if r < s

Definition 2.1. A hyperreal r is finite iff there is a standard real B such that
−B ≤ r ≤ B.

Caveat. Several authors draw a distinction between various different flavours of “finite”,
“limited”, “appreciable” and similar terms, denoting combinations of “finite and not
infinitesimal”, “finite infinitesimal” and so forth. We will not need such distinctions in
this essay, so will use simply the word “finite” as in Definition 2.1, but when reading
other authors, make sure to look up their terminology.

Theorem 2.1. Every finite hyperreal r has a unique real standard part.

We give the proof here as a simple demonstration of some of the operations on in-
finitesimals.

Proof. For uniqueness: suppose x, y ∈ R are both “infinitely close” to r ∈ ∗R. That is,
for all ε ∈ R>0,

|r − x| < ε, |r − y| < ε

By the triangle inequality,
|(r − x) − (r − y)| < 2ε

so |x− y| is less than 2ε for all ε.
(The triangle inequality is true by the transfer principle, but we will omit the easy

proof of this fact. We will soon see a fully-worked example of the use of the transfer
principle, in Theorem 3.1.)

Since x, y are both standard reals, this means x− y = 0.
For existence: if r ∈ ∗R is finite, then there is positive B ∈ R such that −B ≤ r ≤ B.

Then
S := {x ∈ R : r ≤ x}



NON-STANDARD ANALYSIS 5

is a set of reals which is nonempty (containing B), and it is bounded below (by −B), so
it has a greatest lower bound, which we shall optimistically call st(r) (for “standard”).

By construction, st(r) is indeed a standard real. We will prove by contradiction that
r − st(r) is infinitesimal.

If r = st(r) then we are instantly done, so suppose that |r − st(r)| > ε for some
ε ∈ R>0.

If r > st(r), then r > ε + st(r). Then in fact st(r) + ε
2 is a lower bound for S,

contradicting the definition of st(r) as a greatest lower bound.
If r < st(r), then r < st(r) − ε, so st(r) − ε

2 lies in S, contradicting the definition of
st(r) as a lower bound for S. □

This justifies the definition of st(r) as the standard part of r.
There are many easy results about standard parts, which all have similar patterns of

proof; we omit the proofs for brevity, and we may use without comment certain obvious
results such as the following.

• st(−u) = −st(u)
• st(u+ v) = st(u) + st(v)
• if u ≤ v, then st(u) ≤ st(v).

The collection of hyperreals infinitesimally close to hyperreal r is known as the monad
of r, and the “local properties” we study in Analysis can often be related to the study
of behaviour in the monad of a point.

3. Derivatives

As an example of the idea of “local properties may be defined in monads”, we give
the following definition of the derivative:

Definition 3.1. The derivative of f : R → R at x ∈ R is defined to be

f ′(x) := st

(∗f(x+ δ) − ∗f(x)

δ

)
for any infinitesimal δ; f is said to be differentiable at x if this is well-defined.

By way of demonstration, consider the function f : R → R by x 7→ xn (some n ∈ N).
By the (imprecise) transfer principle, this defines a function ∗f : ∗R → ∗R which coincides
with the standard version on standard reals. This being our first theorem proved by non-
standard methods, we will walk through it in complete pedantic detail; subsequent proofs
will be considerably lighter to aid comprehension.

Theorem 3.1. If f : R → R by x 7→ xn, then f ′(x) = nxn−1.

Proof. The function f : R → R by x 7→ xn admits the first-order description

(∀x ∈ R)(∃y ∈ R)(y = x× x× · · · × x)
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where there are n terms in the product. (Henceforth we will use the shorthand rn for
r × r × · · · × r, with n terms in the product.) This is a schema of true statements in R,
one for each n ∈ N.

Therefore, by the transfer principle, for each n ∈ N the following sentence is true in
∗R, so we may use it to define ∗f : ∗R → ∗R:

(∀x ∈ ∗R)(∃y ∈ ∗R)(y = xn)

Recall that we wish to show that

st

(
(x+ δ)n − xn

δ

)
is well-defined as δ varies, and equal to nxn−1; for this, we need the binomial theorem.

We will require the following shorthand: fixing n and m, we understand
(
n
m

)
as being

defined by the natural number
n!

m!(n−m)!

which is expressed as 1 + 1 + · · · + 1 for appropriately many terms in the summand.
Now for the binomial theorem itself:

(∀x ∈ R)(∀y ∈ R)((x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · · +

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn)

This is again a schema of true statements in R, one for each n ∈ N, and each of those
statements is to be understood as being written out in full with no elided terms. We
emphasise that

(
n
m

)
is simply a number: it does not even contain any bound variables, and

if we expanded out all of the shorthand, it would appear to be in the form 1+1+ · · ·+1.
Since the binomial theorem holds in the reals, every statement in that schema must

be true in the hyperreals when we transfer to ∗R:

(∀x ∈ ∗R)(∀y ∈ ∗R)((x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · · +

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn)

Notice that behind the scenes, n is the same 1 + 1 + · · ·+ 1 as it always was, so there
is no transfer required in the definition of

(
n
m

)
.

Therefore, in particular, we have

(x+ δ)n − xn

δ
= nxn−1 + δ ·

(
n

2

)
xn−2 + · · · + δn−2 ·

(
n

n− 1

)
x1 + δn−1

where δ is any infinitesimal.
The standard part of this is nxn−1, since every subsequent term has a factor of δ.

(We are implicitly using that adding infinitesimals does not change standard parts,
and multiplying a standard real or an infinitesimal by an infinitesimal results in an
infinitesimal.) □

How about an example where the derivative fails to be defined? The canonical example
is, of course, g(x) = |x|. This extends to ∗g : ∗R → ∗R; for readability, we will suppress
the asterisk on ∗| · |, and henceforth we may use ∗f without the preamble stating the
first-order formula which describes it. We shall take it as read that for any first-order
definable function f , ∗f is defined by the transfer of the formula defining f .
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Theorem 3.2. If g : R → R by x 7→ |x|, then g′ is not defined at 0, but is defined
elsewhere and is equal to the sign of x.

Proof. At 0, the derivative would be

st

(
|δ|
δ

)
= ∗sgn(δ)

which is not constant as δ varies over the monad of 0, because there are both positive
and negative infinitesimals. (If δ is a positive infinitesimal, then −δ is negative.)

Elsewhere, however, the derivative would be

st

(
|x+ δ| − |x|

δ

)
which splits into two cases:

+1 =
x+ δ − x

δ
x > 0

−1 =
−(x+ δ) − (−x)

δ
x < 0

This is because x < 0 implies |x+ δ| ≤ |x|+ |δ| ≃ |x| < 0, and similarly for x > 0. □

3.1. The chain rule. We present the chain rule as a simple example of a theorem whose
proof is made very neat and tidy by the use of infinitesimals.

Theorem 3.3 (Chain rule). Let f, g : R → R be differentiable [in the non-standard
sense]. Then f ◦ g is differentiable, and (f ◦ g)′(x) = f ′(g(x))g′(x).

Proof. Consider

X = st

(
f(g(x+ δ)) − f(g(x))

δ

)
We have

g(x+ δ) = (g′(x) + ε)δ + g(x)

for some ε infinitesimal (depending on δ), by definition of g′(x) as st
(
g(x+δ)−g(x)

δ

)
.

Substituting this into X, obtain

X = st

(
f [g(x) + δ(g′(x) + ε)] − f(g(x))

δ

)
By differentiability of f , have

f ′(g(x)) = st

(
f(g(x) + γ) − f(g(x))

γ

)
for any infinitesimal γ; so letting γ = δ(g′(x) + ε), obtain

f ′(g(x)) = st

(
f [g(x) + δ(g′(x) + ε)] − f(g(x))

δ(g′(x) + ε)

)
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Factoring out st(g′(x) + ε) = g′(x) from the denominator, this is simply X
g′(x) , so

X = g′(x)f ′(g(x))

□

Notice how we did not require any bounding of error terms: the infinitesimals “bounded
themselves” and simply vanished at the end without further hassle.

The rules of linearity of the derivative and the product rule follow very similarly.

Theorem 3.4. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
If f is increasing, then f ′(x) ≥ 0 for all x.

Proof. It is a first-order fact that for all y > x, have f(y) ≥ f(x). Therefore it remains
true on moving to the hyperreals.

Then
f(x+ δ) − f(x)

δ
≥ 0

whenever δ is infinitesimal, so it remains so on taking standard parts. □

Remark. This is a partial converse to the theorem that having a positive derivative means
the function is increasing; that fact, however, is a purely standard consequence of the
Mean Value Theorem (which is itself a consequence of Rolle’s Theorem, Theorem 5.5),
so we will not prove it here. Moreover, the standard proof of the “standard consequence”
is elegant; this is an advertisement for using both standard and non-standard methods
together.

4. Continuity

Recall the definition of a closed interval in R:

[a, b] = {x ∈ R : a ≤ x ≤ b}
The transfer principle lets us carry this over to ∗R: to

∗[a, b] = {x ∈ ∗R : a ≤ x ≤ b}
Remark. There are hyperreals infinitesimally less than a, which do not appear in ∗[a, b].
Such hyperreals have standard part equal to a and yet are not in ∗[a, b]. This demon-
strates that st(r) ∈ X does not necessarily imply r ∈ ∗X.

Definition 4.1 (Continuity). We say a function f : [a, b] → R is continuous at
x ∈ [a, b] iff ∗f(x + δ) ≃ ∗f(x) for all δ infinitesimal with x + δ ∈ ∗[a, b]. That is,
∗f has a standard part which is constant on the monad of x ∈ R.

For illustration, we shall prove here that this definition is equivalent to the ε-δ defini-
tion of continuity, but in general we will use non-standard definitions freely throughout
this essay. (We will not prove that the non-standard definition of “derivative” is equiv-
alent to the standard one, for instance.)
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Theorem 4.1. The function f : [a, b] → R is ε-δ continuous at x iff it is continuous
at x in the non-standard sense.

To make the proof easier to read, we will continue to suppress the asterisk in the
extension ∗| · | of the modulus function. This proof may be found as Corollary 7.1.2 in
Goldblatt, although it is not very difficult to come up with by oneself.

Proof. Forward direction: let x ∈ [a, b], and suppose for all ε there is δ such that for all
y with |y − x| < δ, have |f(y) − f(x)| < ε. Then letting εn = 1

n , obtain δn such that for

all y with |y − x| < δn, |f(y) − f(x)| < 1
n . Transfer this collection of facts (one for each

n ∈ N) to ∗R.
But every y ∈ ∗R with y ≃ x satisfies |y − x| < δn for all n, so | ∗f(y) − ∗f(x)| < 1

n
for all n. That is, ∗f(y) ≃ ∗f(x) for all y ≃ x.

Conversely, suppose f is nonstandard-continuous at x ∈ R. Let ε ∈ R>0. For any
infinitesimal δ > 0, have that for all y ∈ ∗R with |y − x| < δ, | ∗f(y) − ∗f(x)| < ε.
Therefore (in particular) there is some δ ∈ ∗R>0 such that for all y ∈ ∗R with |y−x| < δ,
| ∗f(y) − ∗f(x)| < ε.

By the reverse direction of the transfer principle, the same statement must also hold
in R: there is δ ∈ R>0 such that for all y ∈ R with |y − x| < δ, have |f(y) − f(x)| < ε.

□

This is one of the only places we will use the reverse direction of the transfer principle;
Theorem 4.1 was included only to demonstrate the usual character of such proofs. Again,
we will focus on the development of analysis results in non-standard analysis rather
than on foundational rigour. The reverse of the transfer principle appears usually when
showing that standard definitions are equivalent to non-standard ones.

Recall from Definition 3.1 that f : [a, b] → R is differentiable at x ∈ R iff the quantity

st

(
f(x+ δ) − f(x)

δ

)
is invariant for infinitesimal δ.

Then it is easy to see that continuity is required for differentiability. Indeed, if f(y)
and f(x) are not infinitesimally close even though y = x+ δ ≃ x, then f(x+ δ) − f(x)

is not infinitesimal, so f(x+δ)−f(x)
δ must be infinite.

4.1. Uniform continuity. By definition, f : [a, b] → R is continuous at x ∈ R iff
∗f : ∗[a, b] → ∗R has invariant standard part when we perturb standard-real x ∈ [a, b]
infinitesimally. If we form the stronger requirement that ∗f have invariant standard
part when we perturb any hyperreal x ∈ ∗[a, b] infinitesimally, then we obtain uniform
continuity. This fact is highly surprising, but for reasons of space we will not prove it
here.

Theorem 4.2. Let f : [a, b] → R be continuous. Then f is uniformly continuous.
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Proof. Let x ∈ ∗[a, b], and y ≃ x. Then say z = st(x) ∈ R. Certainly st(y) = st(x),
so f(x) ≃ f(z) by continuity of f at the real z; and f(z) ≃ f(y) similarly. Hence by
transitivity of ≃, have f(x) ≃ f(y). □

Example. Notice how this fails for f : (0, 1] → R by x 7→ 1
x . Indeed, our choice of x

could have been infinitesimal; then z = st(x) = 0 lies outside the domain of f . This
formulation makes it obvious what fact we used about the non-standard formulation of
a compact set: namely, that the set is closed under taking standard parts.

In a standard setting, the two usual proofs of Theorem 4.2 go via convergence of
sequences and Bolzano-Weierstrass, or via the Lebesgue number lemma. This beautifully
elegant proof has eliminated an enormous amount of the complexity of the same result
in the standard setting, and its simplicity and lack of clutter reveals precisely what
“compact” should mean in more general non-standard metric spaces.

4.2. Compactness. Robinson discovered an extremely neat formulation of the notion
of compactness.

Definition 4.2 (Compactness). A set X ⊆ R is compact iff every x ∈ ∗X has some
y ∈ X with x ≃ y.

From this definition, it is easy that the continuous image of a compact set is compact.

Theorem 4.3. Let f : X → R be continuous and X compact. Then the image of f
is compact.

Proof. Let y ∈ ∗(f(X)) = ∗f(∗X). We wish to show that there is x ∈ f(X) with y ≃ x.
Say y = ∗f(a), and let x = f(st(a)). Then ∗f(a) ≃ ∗f(st(a)) by continuity of f , so

we are immediately done. □

To obtain a more specific form of Theorem 4.3 without using the Heine-Borel theorem—
that is, using closed boundedness directly rather than through compactness—it will be
useful to develop the idea of the hypernatural numbers and hyperfinite partitions of a
set.

5. Hypernaturals

For the moment, we will work within the ultrapower construction of the hyperreals.
It is possible to proceed while remaining agnostic about the construction, but the details
for this section are much simpler when working with an ultrapower. We will paint the
construction in broad strokes here.

5.1. Internal sets.

Motivation. The motivating example for this section is the canonical model of Peano
arithmetic embedded in R: namely, N. When we pass to ∗R, we might expect to obtain
a non-standard model of Peano arithmetic, playing the same role in ∗R as N does in R.
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The transfer principle tells us, informally, that “from within the model, everything
looks like R”. We would like a way to capture, for instance, the Archimedean property :
that for every r ∈ R, there is n ∈ N such that r < n. That is, we seek a set of
“hypernaturals”, forming a non-standard model of Peano arithmetic embedded in ∗R,
such that every hyperreal r has a hypernatural N bounding it above.

We will require the notion of an “internal” set: intuitively, “a set which exists in the
model of ∗R”. For most of our purposes, it is enough to know that sets whose members
are precisely those hyperreals satisfying some first-order property are internal (which is
proved in Section 11.7 of Goldblatt [4], and is indeed a form of the transfer principle),
but we shall be more explicit using the ultrapower construction.

Given a nonprincipal ultrafilter F on N, we construct ∗R as the collection of sequences
of reals, modulo the equivalence relation that ⟨rn⟩ ∼ ⟨sn⟩ if and only if {n ∈ N : rn =
sn} ∈ F . The intuition is that the two sequences “agree almost everywhere”. (See
Chapter 3 of Goldblatt [4]). We write [rn] for the equivalence class of the sequence ⟨rn⟩.

Fix a sequence of sets ⟨An⟩ with each An ⊆ R. The internal set [An] is defined as
follows:

[rn] ∈ [An] if and only if {n ∈ N : rn ∈ An} ∈ F .

The internal sets are precisely those which may be obtained in this way; they are “the
sets which exist in the model”, and they will turn out to be the sets over which we may
quantify.

Likewise an internal function is obtained from a sequence ⟨fn⟩ of real-valued functions
An → R:

[fn] : [An] → ∗R, [rn] 7→ [fn(rn)]

Definition 5.1. We define the set of hypernaturals to be the set ∗N which is the
image of the elementary embedding of N ⊆ R into ∗R: that is,

[rn] ∈ ∗N ⇔ {n ∈ N : rn ∈ N} ∈ F
By construction, it is an internal subset of ∗R.

Remark. There is an extended form of the transfer principle (where second-order state-
ments may be transferred), which is even more difficult to justify than our original
statement1 of Definition 1.1. It allows us to translate between certain second-order
statements:

(∀A ⊆ B) ↔ (∀A internal ⊆ ∗B)

This procedure can be made to result in a formulation which is agnostic with respect to
how we constructed the hyperreals, but in this essay we have only sketched a motivation,
and have worked within the ultrapower construction. See Chapter 13 of Goldblatt [4]
for the details.

Later on, when we treat measure theory, we will make heavy use of this “restricted
second-order” transfer principle.

1For which, recall, we appealed to the power of  Los’s Theorem.
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The definition of “internal” here was very much dependent on the implementation of
∗R as an ultrapower. However, it may be viewed more generally; this is the start of
“Internal Set Theory”. We will elide such details.

Definition 5.2 (Transfer Principle, extended). Let ϕ be a first-order sentence in
the language of the totally ordered field R, which is additionally allowed to mention
(finitely many) specific sets An ⊆ R, and is allowed to contain quantifiers (∀A ⊆ R)
and (∃A ⊆ R). Then ϕ is true in R if and only if ∗ϕ is true in ∗R, where ∗ϕ is
obtained by

(1) replacing all quantifiers (∀x ∈ R) with (∀x ∈ ∗R) and (∃x ∈ R) with (∃x ∈
∗R);

(2) replacing each An with ∗An;
(3) replacing all quantifiers (∀A ⊆ R) with (∀A internal ⊆ ∗R) and likewise

(∃A ⊆ R) with (∃A internal ⊆ ∗R).

By transfer, hypernaturals have several obvious properties:

• They are closed under addition.
• There are no hypernaturals between m and m+ 1, for m hypernatural.
• For every x ∈ ∗R, have x ∈ ∗[ ∗⌊x⌋, ∗⌊x⌋ + 1].

Every hypernatural is either standard natural, or bigger than all standard naturals;
this can be seen from the (transferred) fact that subtracting 1 from a nonzero hypernat-
ural yields another hypernatural, and the (transferred) fact that all hypernaturals are
nonnegative.

Example. It is a second-order expressible fact in the reals that every nonempty finite set
has a least element:

(∀A ⊆ R)((∃n ∈ N)(A has n elements and n > 0) ⇒ (∃x ∈ A)(∀y ∈ A)(x ≤ y))

Here, we use a shorthand:

(A has n elements) ↔ (∃ a bijective function {x ∈ N : x < n} → A)

The transfer principle from Definition 1.1 does not apply. But our amended second-
order version does apply, to give us

(∀A internal ⊆ ∗R)((∃n ∈ ∗N)(A has n elements and n > 0) ⇒ (∃x ∈ A)(∀y ∈ A)(x ≤ y))

where

(A has n elements) ↔ (∃ a bijective internal function {x ∈ ∗N : x < n} → A)

That is, internal hyperfinite sets have least elements.
In fact, if we work in the ultrapower construction, the minimal element of the internal

set [An] is [an], where for each n ∈ N, an is the least element of An. (We will not prove
this.)

Additionally, if m is a hypernatural and x1, x2, . . . , xm is an internal set of hyperreals,
then there is a maximum xi.
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5.2. Hypersequences. We may define hypersequences, by means of transferring a func-
tion f : N → R to a function ∗f : ∗N → ∗R. (We will assume that we can always extend
f , whether or not the transfer principle applies to our particular choice of f . This re-
quirement is justifiable; it is studied in a little more detail in Section 9.1.) The notion of
a hypersequence leads to a very neat characterisation of the convergence of a sequence.

Definition 5.3. If f : N → R, have (f(n))n∈N → x ∈ R if and only if ∗f(k) ≃ x
for all k infinite. (Recall that ∗f maps from ∗N to ∗R.)

Of course, from within the model, the statement “for all infinite k” is not meaningful,
because the set of infinite naturals is not internal.

Theorem 5.1. The set of infinite hypernaturals is not internal.

Proof. Every non-empty internal set of hypernaturals has a smallest element. This is
Exercise 1 from Section 12.4 of Goldblatt [4], and it follows by transferring the true
statement of the well-ordering of the naturals:

(∀A ⊆ N)(∃n ∈ A)(∀m ∈ A)(n ≤ m)

to

(∀A internal ⊆ ∗N)(∃n ∈ A)(∀m ∈ A)(n ≤ m)

But there is no smallest infinite hypernatural, because subtracting 1 from any infinite
hypernatural yields another infinite hypernatural. □

Theorem 5.2. The non-standard and the standard definitions of convergence coin-
cide: if (and only if) (f(n)) → x in the non-standard sense of Definition 5.3, then
for every ε ∈ R>0 there is N ∈ N such that for all n > N , |f(n) − x| < ε.

Proof. If the sequence (f(n)) converges to x in the non-standard sense, then for every
ε ∈ R>0 we have all infinite N ∈ ∗N satisfying

for all n > N , | ∗f(n) − x| < ε

Therefore it must be the case that some N ∈ N has this same property transferred to
the reals:

for all n > N , |f(n) − x| < ε

since if not, this would be an internal property that distinguished between finite N and
infinite N ; this contradicts Theorem 5.1.

Conversely, suppose the sequence (f(n)) converges to x in the standard sense. Fix
some ε ∈ R>0. Then there is some particular Nε - say, for the sake of argument, Nε = 10
- such that all larger n ∈ N have |f(n) − x| < ε.

This property transfers to the hyperreals: for all n ∈ ∗N with n > Nε (which, for the
sake of argument, is 10), we have

| ∗f(n) − x| < ε
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In particular, all infinite hypernaturals n satisfy | ∗f(n) − x| < ε.
Finally, allowing ε to vary over all positive reals, we discover that for all infinite

n ∈ ∗N, it is the case that ∗f(n) ≃ x. □

5.3. Lattices. Hypernaturals yield a succinct proof of the Intermediate Value Theorem,
by means of considering a “hyperfinite lattice” of points on the real line. We examine
the behaviour on that lattice of a R-continuous function when it is extended to ∗R, and
gain access to the nice properties of hyperfinite sets. The following proof is from Pétry
[2], where it appears as Theorem 25.

Theorem 5.3. Let f : [a, b] → R be continuous with f(a) < 0 < f(b). Then there
is c such that f(c) = 0.

Proof. Extend f to ∗f , and consider the “hyperpartition” of [a, b]

S =

{
b− a

m
k + a : 0 ≤ k ≤ m

}
for m a fixed infinite hypernatural.

Construct

T = {∗f(x) : x ∈ S, ∗f(x) > 0}
Then k̄ := min{x ∈ S : ∗f(x) ∈ T} has

st ∗f
(
k̄
)

= 0

since certainly it is ≥ 0 by definition as (the standard part of) a member of a set T
of positive numbers, while if it were strictly greater than 0 then we could subtract b−a

m

from k̄ to obtain another member κ of S such that ∗f(κ) ∈ T , contradicting minimality
of k̄. k̄ does exist, because it is the minimum of a hyperfinite set. □

(This proof can be converted into another non-standard one which does not use hy-
pernaturals, instead using the least upper bound property of the standard reals.)

We are now ready to revisit Theorem 4.3 in a more concrete form.

Theorem 5.4. Let f : [a, b] → R be continuous. Then f is bounded and attains its
bounds.

Proof. Extend f to ∗f .
Then for m a hyperfinite integer,

S =

{
b− a

m
k + a : 0 ≤ k ≤ m

}
is a hyperfinite set and so ∗f attains a maximum and a minimum on that set; say at
m+,m− respectively. Since [a, b] is bounded, we must have ∗[a, b] bounded, and so m+

and m− are finite.
Now, if ∗f(m+) is infinite, then st(∗f(m+)) = f(st(m+)) would be infinite too (by

continuity), which is a contradiction unless st(m+) lies outside [a, b]. But this can never
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happen because [a, b] is closed: since m+ ≥ a, we must have st(m+) ≥ st(a) = a, and
likewise since m+ ≤ b, we must have st(m+) ≤ st(b) = b.

Therefore ∗f(m+) is finite; so ∗f is bounded above on S and attains its bound, at
m+. Hence by continuity f is bounded above and attains its bound at st(m+), which
we have already shown is in the domain [a, b].

Exactly the same argument shows that f is bounded below and attains its bound. □

Remark. The proof of Theorem 5.4 is so short and concise that it becomes extremely
clear what its real content is: namely, that closed bounded intervals are compact (in
the sense of Definition 4.2). Most of the proof is simply showing that m+ and m− must
have standard parts in the domain of f , which is precisely what it means for [a, b] to be
compact.

We move on to the related Rolle’s Theorem.

Theorem 5.5 (Rolle’s Theorem). Let f : [a, b] → R be differentiable on (a, b) and
continuous on [a, b]. Suppose that f(a) = f(b). Then there is c ∈ (a, b) such that
f ′(c) = 0.

Proof. The following proof is from Section 8.5 of [4]. Since f is continuous on a closed
bounded interval, it is bounded and attains its bounds (Theorem 5.4). If f(x) = f(a) =
f(b) for all x, then we are done: f is constant and so has zero derivative everywhere.
Otherwise, without loss of generality, f attains a global maximum at x ̸∈ {a, b}, say. (If
in fact f(a) is a global maximum, then consider −f instead.)

Now, it is a first-order fact that f(y) ≤ f(x) for every y ∈ [a, b]; so by transfer, x
maximises ∗f .

Therefore
f(x+ ε) − f(x)

ε
≤ 0 ≤ f(x+ δ) − f(x)

δ

for any ε > 0, δ < 0 both infinitesimal.
Since the left-hand side and right-hand side are both infinitesimally close to each other,

on taking standard parts we obtain that f ′(x) is both nonnegative and nonpositive, so
it must be 0. □

The Mean Value Theorem and then Taylor’s theorem can be proved in an ε-δ free
way from Rolle’s theorem (for example, as in Theorem 4 of Chapter 11 in Spivak [5]).

5.4. Hyper-sums. Continuing the theme of the hypernaturals, we investigate hyper-
sums.

Let S(n) =
∑n

i=0 f(i), for f : N → R. This function S extends to a function ∗S :
∗N → ∗R, since we may express S in a transferrable way as

S(0) = f(0); (∀n ∈ N>0)(S(n) = S(n− 1) + f(n))

and then (using our second-order transfer principle) show that there is only one ∗S which
satisfies the transferred condition.



16 PATRICK STEVENS

The transfer principle yields properties such as

(1) ∗|
m∑
k=0

λkuk| ≤ (max ∗|uk|)
m∑
k=0

∗|λk|

where for clarity we have implicitly suppressed the asterisk on the ∗∑ symbol.

6. Integration

The definition of the Riemann integral is made especially comprehensible by the notion
of the hyper-sum. Taking the standard method of approximating an integral by the area
of rectangles, and then taking the number of rectangles to be larger and larger and
eventually infinite (i.e. hyperfinite), is a highly intuitive idea.

The “obvious” choice of the definition of
∫ b
a f would be

st

(
m−1∑
k=0

∗f(xk)(xk+1 − xk)

)
where m is some hyperfinite integer, and

xk =
b− a

m
k + a

However, a little thought suggests that some rather pathological functions would
thereby be considered to have very wrong integrals, because we can only ever sample ∗f
at some fixed points; letting our function misbehave away from those points would yield
counterintuitive results.

The correct refinement is as follows.

Definition 6.1. The integral of f : [a, b] → R is the following expression, if it is
well-defined: ∫ b

a
f = st

(
m−1∑
k=0

∗f(∗ϕ(xk, xk+1))(xk+1 − xk)

)
where ϕ is any function [a, b]2 → R such that r ≤ ϕ(r, s) ≤ s, and (xk+1 − xk) = 1

m ,
and m is an infinite hypernatural.

This captures the idea that our m sampling points are allowed to vary their position
slightly in their respective intervals.

We say a function f : [a, b] → R is integrable if
∫ b
a f is well-defined as hyperfinite m

varies and for all choices of ϕ.
Showing that a function is integrable is approximately as difficult using the non-

standard definition as it is using the standard definition (as a limit of a Riemann sum
taken over smaller and smaller dissections). However, the non-standard definition is
perhaps conceptually a little simpler, because it lacks a limiting process.

To illustrate the process of showing a function is integrable, we prove that continuous
functions are integrable. The proof here, rendered down from Pétry’s ([2], Section 12.5),
is very similar to a standard proof.
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Theorem 6.1. Let f : [a, b] → R be continuous. Then f is integrable.

Proof. We need to show that given two different discretisations (xk)mk=0 and (yk)nk=0, and
two “nearness” functions ϕ and ψ, the following is true:

m−1∑
k=0

∗f(∗ϕ(xk, xk+1))(xk+1 − xk) ≃
n−1∑
k=0

∗f(∗ψ(yk, yk+1))(yk+1 − yk)

Consider the more general discretisation given by taking the union of the xi and yi:
label this list (wi)

l
i=0. (Note that this is no longer “uniform”: the wi do not necessarily

have equal intervals between them, although the xi and yi did.) We will suppress the
asterisk on ∗[α, β] henceforth.

Each [wi, wi+1] lies fully within some [xj , xj+1], by construction of the wi, so

[xk, xk+1] = [wik , wik+1] ∪ · · · ∪ [wrk−1, wrk ]

for some ik, rk.
Therefore, suppressing the asterisk on ∗ϕ(xm, xm+1), we may un-telescope the sum:

∗f(ϕ(xk, xk+1))(xk+1 − xk) =

rk−1∑
j=ik

∗f(ϕ(xk, xk+1))(wj+1 − wj)

so
m−1∑
k=0

∗f(ϕ(xk, xk+1))(xk+1 − xk) =
m−1∑
k=0

rk−1∑
j=ik

∗f(ϕ(xk, xk+1))(wj+1 − wj)

Now, since xk ≃ xk+1 and wj , wj+1 are both in [xk, xk+1], we have

ϕ(xk, xk+1) ≃ wj ≃ wj+1

Hence in fact the right-hand side is an expression for a Riemann sum with (wi) as a
dissection, although recall that the dissection does not have equal intervals between
successive points.

Relabelling the sum on the right-hand side, for some (ck)lk=0 (which, if we were so
inclined, we could express in terms of ϕ and the xi), we have

m−1∑
k=0

∗f(ϕ(xk, xk+1))(xk+1 − xk) =
l−1∑
k=0

∗f(ck)(wk+1 − wk)

Symmetrically,

n−1∑
k=0

∗f(ψ(yk, yk+1))(yk+1 − yk) =

l−1∑
k=0

∗f(dk)(wk+1 − wk)

for some (dk)mk=0 with each ck ≃ dk. Notice that the upper limit of this sum is indeed
the same l − 1 as before, because the dissection is taken over the same sequence (wi).

Taking the modulus of the difference of the two expressions, obtain∣∣∣∣∣
l−1∑
k=0

(∗f(ck) − ∗f(dk))(wk+1 − wk)

∣∣∣∣∣
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But f is continuous on a compact set, so is uniformly continuous (see Section 4.1); so
∗f(ck) − ∗f(dk) is infinitesimal for all k, because ck ≃ dk.

By equation 1 in Section 5.4, for every ε ∈ R>0 we have∣∣∣∣∣
l−1∑
k=0

(∗f(ck) − ∗f(dk))(wk+1 − wk)

∣∣∣∣∣ ≤ ε
l−1∑
k=0

|wk+1 − wk|

Therefore the two expressions for the integral are indeed infinitesimally close, since

l−1∑
k=0

|wk+1 − wk| =

l−1∑
k=0

(wk+1 − wk) = b− a

□

Before we introduce the link between integration and differentiation (the Fundamental
Theorem of Calculus), we first require a lemma, which is Pétry’s Theorem 32.

Theorem 6.2 (Integral mean value theorem). Let f : [a, b] → R be continuous.
Then there is a real u ∈ [a, b] such that∫ b

a
f(x)dx = (b− a)f(u)

Proof. Since f is continuous on a closed bounded interval, it attains its bounds; say
f(c) ≤ f(x) ≤ f(d) for all x.

Now, (b− a)f(c) ≤ S(δ) ≤ (b− a)f(d) for any Riemann sum S(δ) with box-width δ,
so

f(c) ≤ 1

b− a

∫ b

a
f(x)dx ≤ f(d)

Then we are done by the Intermediate Value Theorem: there is u ∈ [c, d] such that

f(u) =
1

b− a

∫ b

a
f(x)dx

□

Theorem 6.3 (Fundamental Theorem of Calculus, first part). Let f : [a, b] → R be
continuous, and x0 ∈ [a, b]. Then the function

g : x 7→
∫ x

x0

f(t)dt

is differentiable on (a, b) with derivative g′(x) = f(x). That is, an antiderivative of
f is given by the integral.

Proof. Let δ be infinitesimal. Then

∗g(x+ δ) − ∗g(x)

δ
=

1

δ

∫ x+δ

x
f(t)dt
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By transferring the integral mean value theorem (Theorem 6.2), there is w ∈ ∗[x, x+δ]
such that

1

δ

∫ x+δ

x
f(t)dt = ∗f(w)

On taking standard parts and using continuity, we obtain

st

(∗g(x+ δ) − ∗g(x)

δ

)
= st(∗f(w)) = f(x)

□

The first part of the FTC told us how to find an antiderivative by integrating. There
is a second part to the FTC, which will tell us how to integrate f in terms of a known
antiderivative. To prove it, we shall require a standard theorem on antiderivatives.

Theorem 6.4. Antiderivatives are unique up to the addition of a constant. That
is, if H1, H2 : [a, b] → R satisfy H ′

i = f , then H1 = H2 + k for some constant k.

Proof. Consider H1 − H2 : [a, b] → R. This function has derivative 0 at all points.
By the Mean Value Theorem, this means H1 −H2 is constant. (This follows from the
remark after Theorem 3.4, by which we deduce that H1−H2 is both nondecreasing and
nonincreasing.) □

Theorem 6.5 (FTC, second part). Let f : [a, b] → R be continuous, and suppose
F : [a, b] → R is an antiderivative for f (so F ′ = f). Then∫ b

a
f = F (b) − F (a)

Proof. Break the integral up at the point x0, and define

G(x) =

∫ x

x0

f

By the first part of the FTC (Theorem 6.3), G is an antiderivative for f ; so since F
and G are both antiderivatives, they differ by a constant (Theorem 6.4):

F (x) + c = G(x)

Therefore ∫ b

a
f =

∫ x0

a
f +

∫ b

x0

f = −G(a) +G(b) = F (b) − F (a) + c− c

where the transformation ∫ b

a
f =

∫ x0

a
f +

∫ b

x0

f

follows from splitting up the Riemann sum. (Because the integral is well-defined, we are
free to choose a convenient Riemann sum where x0 is a point of the discretisation, so
that the sum splits up perfectly into two chunks.) □
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Remark. One consequence of this theorem is that if f ′ is continuous between a and b,
then its integral is f(b) − f(a).

Definition 6.2 (Improper integral). We write
∫∞
a f(x)dx for the expression

st

(∫ M

a
f(x)dx

)
where M is an arbitrary infinite positive hyperreal, if that expression is finite and
well-defined as M varies.

Example. When does
∫∞
a xθdx exist? Assuming θ ̸= −1, the integral is

st

(∫ M

a
xθdx

)
= st

([
xθ+1

θ + 1

]M
a

)
= st

(
M θ+1

θ + 1
− aθ+1

θ + 1

)
This is well-defined if and only if θ + 1 < 0, in which case its value is −aθ+1

θ+1 .

If instead θ = −1, the integral is st(log(M)− log(a)), which is infinite, so the integral
is not defined in this case either.

7. Series

Intuitively, since series are simply infinite sums, it should be the case that hyperfi-
nite sums express series neatly. This turns out to be the case. We are still assuming
throughout that we may extend standard sequences to non-standard sequences; see fur-
ther discussion in Section 9.1.

Definition 7.1. Let c : N → R by k 7→ ck. We say
∞∑
i=0

ck

converges iff

st

(
m∑
k=0

∗ck

)
is finite and is well-defined as m varies over all infinite hypernaturals in ∗N.

Two of the standard examples of infinite sums are
∞∑
k=1

1

2k

and
∞∑
k=1

1
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The former, of course, converges. In this instance, it is a fact that

m∑
k=1

1

2k
= 1 − 2−m

and this fact is true in the limited second-order sense of Section 5.1, so it remains true
when we transfer to infinite m; in particular, then 2−m is infinitesimal, so the standard
part of our resulting sum is simply 1.

For the latter sum (that is, the sum of infinitely many of the constant 1), we have

m∑
k=1

1 = m

which has infinite standard part when m is infinite; so in this instance, as expected, the
sum fails to converge.

To understand convergence, the following result is very useful; it basically states that
a sequence is Cauchy if and only if it converges, in the specific case that the sequence is
a sequence of partial sums of a series.

Theorem 7.1 (Cauchy’s criterion).
∑∞

k=1 ak converges if and only if
n∑

k=m

∗ak

is infinitesimal for all m ≤ n infinitely large.

Proof. This proof is from Pétry [2], section 19.2, where it appears as Theorem 53.
Suppose

∑∞
k=1 ak converges to a. Then

n∑
k=m

∗ak =
n∑

k=1

∗ak −
m−1∑
k=1

∗ak ≃ a− a = 0

Conversely, suppose
n∑

k=m

∗ak

is infinitesimal for all m ≤ n infinite. We need
∑m

k=1
∗ak to have the same, finite,

standard part as
∑n

k=1
∗ak for all m < n infinite.

Clearly they have the same standard part if both sums are finite, because when we
subtract them, we obtain

n∑
k=m+1

∗ak

which is infinitesimal by assumption. So it remains to show that they are indeed finite.
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Let ∗n be some fixed infinite hypernatural (which we decorate with the asterisk as a
cue for the fact that is infinite). For all infinite m < ∗n, we have that∣∣∣∣∣∣

∗n∑
k=m

∗ak

∣∣∣∣∣∣ < 1

(In fact, we have much more: we have that the left-hand side is infinitesimal.)
Since the property

P (m) =

(m < ∗n) →

∣∣∣∣∣∣
∗n∑

k=m

∗ak

∣∣∣∣∣∣ < 1


is internal, it cannot suffice by itself as a means of distinguishing between finite and
infinite integers m. (Indeed, no such means exists, by Theorem 5.1.) So there must be
a finite natural p such that P (p) holds:∣∣∣∣∣∣

∗n∑
k=p

∗ak

∣∣∣∣∣∣ < 1

Therefore
∑∗n

k=1
∗ak is finite, being the sum of two finite quantities

p−1∑
k=1

∗ak +

∗n∑
k=p

∗ak

□

Example (The harmonic series).

2m∑
k=m+1

1

k
≥ m× 1

2m
=

1

2

which is not infinitesimal when m is infinite, so Cauchy’s criterion fails for the harmonic
series. (This is basically the usual proof by Cauchy condensation.)

Theorem 7.2. Absolute convergence implies convergence.

Proof. Because ∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak|

(for n,m either infinite or standard integers), the result is immediately clear from
Cauchy’s criterion. □

The comparison test likewise follows by transferring the fact that
n∑

k=m

ak ≤
n∑

k=m

bk

whenever ak ≤ bk for all k ∈ [m,n].
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Theorem 7.3 (Ratio test). Let ak be a sequence of reals.

(1) If there is some real L such that for all infinitely large m,∣∣∣∣am+1

am

∣∣∣∣ ≤ L < 1

then
∑∞

k=1 ak converges absolutely.
(2) If instead for all infinite m we have∣∣∣∣am+1

am

∣∣∣∣ ≥ 1

then the sum diverges.

Proof. We prove only the first of these, since the second is almost identical in proof.
Notice that we are omitting the asterisk of ∗am+1, to make a more readable theorem
statement.

Using the idea from Theorem 7.1 that “for all m > m0, have
∣∣∣am+1

am

∣∣∣ ≤ L” cannot be

a way to distinguish those m0 which are infinite from those m0 which are finite, there
must be some m0 finite with ∣∣∣∣am+1

am

∣∣∣∣ ≤ L

for all m > m0. Then we simply proceed by comparison with the convergent geometric
series with common ratio L. □

Notice that this easily implies the standard statement of the ratio test, because if
am+1

am
→ L < 1

as m→ ∞, then for all infinitely large m, have

am+1

am
≃ L <

1 + L

2
< 1

Remark. The non-standard formulation of the ratio test is a little more clumsy in its
proof than the standard version, because it essentially states that “it is enough to pass
to the standard version” and then proves the standard version by comparison. However,
the non-standard version has the aesthetic benefit of being free of any explicit limits.

Theorem 7.4 (Alternating series test). Let (an) be a sequence of positive reals
which are decreasing to 0. Then

∞∑
k=1

(−1)kak

converges.

Proof. This proof is derived from Theorem 59 of Pétry [2].
Let m,n be infinite hypernaturals. The sum

S = am − am+1 + am+2 − · · · + (−1)n−man
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is precisely one of the two following:

am − (am+1 − am+2) − · · · − (an−2 − an−1) − an

or

am − (am+1 − am+2) − · · · − (an−3 − an−2) − (an−1 − an)

depending on the parity of n. Because the ai are decreasing, the result must be less than
am in either case, since each bracketed term is nonnegative. If we omit the first term,
we obtain a quantity

−S′ := S − am = −(am+1 − am+2 + · · · + (−1)n−m+1an)

where S′ is less than am+1, so −S′ is greater than −am+1. Hence in fact S ≥ am−am+1 ≥
0, so S is nonnegative.

Therefore

S =

∣∣∣∣∣
n∑

k=m

(−1)kak

∣∣∣∣∣ ≤ am

Since (an) converges to 0, for infinite M we have aM ≃ 0, so
∑N

k=M (−1)kak is infini-
tesimal (being bounded in modulus by aM ). We are therefore done by Cauchy’s criterion
(Theorem 7.1). □

We omit the integral test for convergence, because it is a routine application of similar
ideas to the above; it may be found in Pétry, section 19.3 [2].

8. More general topological ideas

In this section, we will discuss how the more abstract ideas of topology can be viewed
in the non-standard setting of ∗Rn, the product of n copies of ∗R. Although we will not
prove that the transfer principle holds between Rn and ∗Rn, it is intuitive that (∗R)n

has some of the properties we would like from ∗(Rn): given any infinitesimal ε ∈ ∗R,
we can obtain infinitesimals ε̂ ∈ (∗R)n in any direction by simply multiplying by any
unit vector, while given any infinitesimal ε̂ ∈ (∗R)n we can take its length to get an
infinitesimal in ∗R. (Length, of course, is defined by transferring the usual Euclidean
distance.) In fact, it is the case that the monad of a point (x, y) in a general product
space is equal to the product of the monads; see Section III.1 of Hurd and Loeb [6].

To be clear, then, two elements of ∗Rn are infinitesimally close iff their norm is infin-
itesimal; equivalently, if and only if their coordinates are pointwise infinitesimally close.
We define standard parts of vectors pointwise.

Definition 8.1. A subset X ⊆ Rn is open if and only if, for every x ∈ X, the
monad of x lies entirely in ∗X.

Remark (Equivalence to the standard definitions). This non-standard definition is easily
implied by the standard definition when stated as being a union of open balls. It implies
the standard definition when stated as “every point has a neighbourhood within the set”:
if x has monad entirely within ∗X, then there is ε > 0 (for instance, any infinitesimal ε)
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such that all y ∈ ∗X, with |y − x| < ε, lie within ∗X. This property transfers to Rn by
the reverse direction of the transfer principle.

Definition 8.2. A subset X ⊆ Rn is closed if (and only if) its complement is open.
That is, X is closed if and only if, whenever y ∈ Rn \X, the monad of y is entirely
outside ∗X.

Theorem 8.1. Let X ⊆ Rn. Then X is closed if and only if every convergent
sequence in X has its limit point within X.

Proof. Let X be closed, and let (xi)
∞
i=1 be a sequence in X, tending to x.

If x ̸∈ X, then x ∈ Rn \ X, so the monad of x lies entirely outside ∗X. But (xi)
converges to x, so all infinite hypernaturals m have xm ≃ x, and this is a contradiction
because all xn ∈ X ⊆ ∗X for n finite. Since no internal property can distinguish
finite hypernaturals from infinite hypernaturals, it must be the case that some infinite
hypernatural M has xM ∈ ∗X.

Conversely, let X be not closed. Then Rn \X is not open, so there is y ∈ Rn \X such
that some r ∈ ∗Rn has st(r) = y but r ̸∈ ∗(Rn \X).

We claim that y is a limit point of X. Indeed, fix some specific ε ∈ R≥0. Then the
following statement is true:

(∃r ∈ ∗Rn)(r ∈ ∗X ∧ |y − r| < ε)

so by the second-order version of transfer (Definition 5.2),

(∃r ∈ Rn)(r ∈ X ∧ |y − r| < ε)

Denote such an r by xε.
Finally releasing ε, (x1/n) converges to x in the ε-δ sense, and therefore in the non-

standard sense (by Theorem 5.2). □

Remark. The proof of Theorem 8.1 is somewhat clumsy: it requires explicit uses of real
ε ∈ R. From a certain point of view, the proof contains two uses of the transfer principle:
once to generate the sequence (x1/n) which converges in the ε-δ sense, and once in the
statement that ε-δ convergence is equivalent to convergence in the sense of Definition
5.3. (This latter usage is hidden away in the proof of Theorem 5.2.)

Theorem 8.2 (Robinson’s theorem). Let X ⊆ Rn. Then the following are equiva-
lent:

(1) X is compact in the non-standard sense that every point x ∈ ∗X has a
standard rx ∈ X to which it is infinitesimally close.

(2) X is compact in the standard sense that every open cover has a finite sub-
cover.

Proof. (2) ⇒ (1): This direction of the proof is from Theorem 4.1.13 of Robinson [1].
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Suppose x ∈ ∗X has the property that no r ∈ X has r ≃ x. The idea is to transfer the
fact that “there is a finite collection of points which together are near to every point”,
for a contradiction.

For each r ∈ X we can find a ball Br around r, of positive standard-real radius εr,
such that ∗Br does not contain x (indeed, if not, then r would be infinitesimally near to
x).

This collection of balls Br forms an open cover of X, so it has a finite subcover; but
each ball Br can be specified in a first-order way as {x ∈ X : d(x, r) < εr}, so we have
the internal statement that

X = Br1 ∪Br2 ∪ · · · ∪Brn

By transfer, this must be true of ∗X too:

∗X = ∗Br1 ∪ · · · ∪ ∗Brn

which is a contradiction because we built the Br such that no ∗Br contained x.
(1) ⇒ (2): This direction of the proof is taken from Goldblatt [4], where it is given

in Section 10.3. The proof is beautiful, but has the weakness that it does not extend
to arbitrary topological spaces, because it relies on the presence of the rationals. (The
result is true in general.)

Suppose X ⊆ Rn is not compact in the standard sense. Since the product of compact
spaces is compact, there must be some coordinate i such that the ith projection πi(X)
is not compact in the standard sense, so it is enough to work with πi(X) = X ′ ⊆ R. If
we can deduce that there is some x′ ∈ X ′ whose standard part is not in ∗X ′, then we
can lift it up to any point x ∈ X with ith coordinate equal to x′; the standard part of x
then does not lie in ∗X.

To reiterate, then, we are working with X ′ ⊆ R which is not compact in the standard
sense. Let (Ui)

∞
i=1 be an open cover of X ′ without any finite subcover. We tweak each

Ui into an open interval whose endpoints are rational.
Every r ∈ X ′ lies within some Uir , say. Since Uir is open, it contains an interval

Cr := (pr, qr) with rational endpoints, such that the interval contains r. This creates an
open cover

C := ⟨Cr : r ∈ X ′⟩
such that every Cr is entirely contained within some Uir .

But there are only countably many such intervals, so we may in fact enumerate the
open cover C: say as

C = ⟨(pn, qn) : n ∈ N⟩
Certainly C covers X ′, because every r ∈ X ′ lies in its Cr, and Cr is included in the

enumeration. It has no finite subcover, because each Cr is contained entirely within Uir ,
so that would imply a finite subcover from the Ui.

But now it is true that

(∀k ∈ N)(∃x ∈ X ′)(∀n ∈ N)[n ≤ k ⇒ x ̸∈ (pn, qn)]

which precisely states that for all k,

X ′ ̸⊆ (p1, q1) ∪ · · · ∪ (pk, qk)
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This is a statement which transfers to the hyperreals. Fix some infinite hypernatural
K (it does not matter which), and let x ∈ ∗(X ′) be such that for all n ∈ ∗N with n ≤ K,
we have x ̸∈ ∗(pn, qn). Then for all finite n, we have x ̸∈ ∗(pn, qn).

Finally, we claim that x is our hyperreal in ∗(X ′) which has its standard part not
contained in X ′, thereby witnessing that X ′ is not compact in the non-standard sense.
Indeed, any r ∈ X ′ is contained within some (pn, qn), so if x ≃ r then pn < x < qn,
which would contradict the previous paragraph. □

Theorem 8.3 (Heine-Borel). The compact sets in Rn are precisely the closed bounded
sets.

Proof. Let X ⊆ Rn be closed and bounded. Then take a point x ∈ ∗X. x is finite,
because the statement that X is bounded is a restricted second-order statement in the
sense of Definition 5.2, so it remains true of ∗X by transfer. Therefore x has a standard
part st(x) ≃ x, which we claim lies in X.

Indeed, if st(x) were not in X, then the monad of st(x) would lie outside ∗X (since
X is closed), and in particular x would not be in ∗X.

Conversely, let X ⊆ Rn be compact. Then X is bounded: if X were unbounded,
then ∗X would contain an infinite x ∈ ∗Rn (since if not, we could distinguish infinite
hyperreals from finite ones by comparing them with members of ∗X), and so no member
of X ⊆ Rn could be infinitesimally close to x.
X is closed: let y ∈ Rn \X. We wish to show that the monad of y is entirely outside

∗X. If the monad of y contained an element x of ∗X, then by compactness, there would
be a member of Rn which lay in X, infinitesimally close to x. The only possible such
standard member of Rn is y, so in fact y must lie in X after all. □

9. Measure theory

These final sections will address some meatier ideas, with the two goals of formulating
Lebesgue measure and Brownian motion in the language of infinitesimals. For Lebesgue
measure, we primarily use Goldblatt [4], Chapter 16. For the applications to Brownian
motion, we use Hurd and Loeb [6], section IV.6.

Recall the following definitions of several objects fundamental to the study of (stan-
dard) measure theory:

Definition 9.1 (σ-algebra). A collection A of subsets of set S is a σ-algebra if
it contains the empty set and is closed under countable unions, complements, and
symmetric differences.

If A is only closed under finite unions (and complements and symmetric differ-
ences), it is called a ring of sets.
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Definition 9.2 (Measure). Let A be a σ-algebra. A function µ : A → R≥0∪{∞} is
a measure if µ(∅) = 0 and it is countably additive: whenever (An)∞n=1 is a sequence
of pairwise-disjoint members of A, we have

µ

(⋃
n

An

)
=
∑
n

µ(An)

If A is instead merely a ring of sets, µ is a measure if instead it is countably
additive over all sequences of pairwise-disjoint members of A whose union is in A.

It is a classical fact that any measure on a ring of sets A may be extended to a measure
on a σ-algebra σ(A), the intersection of all σ-algebras containing A; this result is known
as the Carathéodory extension theorem. The theorem takes a measure µ on A and
outputs a measure called the outer measure µ+ on σ(A). The exact construction of the
outer measure does not concern us, but it coincides with µ on members of A. The outer
measure need not be even a finitely additive set function on the power set P(S), though
it is countably additive on σ(A) ⊆ P(S); those subsets of S on which µ+ is guaranteed
to behave additively are known as the measurable sets, which we now define.

Definition 9.3 (Measurable set; see Halmos [7], §11). Given a measure µ on ring
of sets A ⊆ P(S), we say that a set B ⊆ S is µ+-measurable if, for every E ∈ A,
we have

µ+(E) = µ+(E ∩B) + µ+(E \B)

where µ+ is the outer measure on σ(A). That is, B “splits every E ∈ A in a way
that is additive with respect to µ+”.

It is a fact that every member of A is µ+-measurable.

Recall the definition of the Lebesgue measure on R:

Definition 9.4 (Lebesgue measure). The Lebesgue measure on R is the measure
λ, on the σ-algebra generated by the open sets of the Euclidean topology (that is, the
σ-algebra whose members are the Borel sets), such that

λ([a, b]) = b− a

for all reals a ≤ b.

Remark. This does indeed specify a measure, by the Carathéodory extension theorem.
It is in fact the unique measure such that λ([a, b]) = b− a; this is Theorem A of §13 in
[7].

We will consider measures constructed by applying Carathéodory’s extension theorem
to measures µL of the following form, as in Goldblatt [4], Section 16.5. Let A be an
internal ring of subsets of S ⊆ ∗R. Let

µ : A → ∗R≥0 ∪ {∞}
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be any finitely-additive function. Define µL (for “µ-Loeb”) by µL(A) = st(µ(A)) if µ(A)
is finite, and ∞ if µ(A) is infinite (as a hyperreal) or is the literal value ∞.

Then µL extends to a measure µ+L on σ(A). We say a set B ⊆ ∗R is Loeb measurable

if it is measurable with respect to µ+L , in the sense of Definition 9.3.
The Loeb measure construction essentially lets us specify a hyperreal size for each

member of an internal collection of subsets of ∗R, and pull that back into a true real-
valued ordinary measure on that internal collection.

Example. Take S = ∗R≥0. Let A be the set of singletons from ∗R≥0.
Then σ(A) is the collection of countable sets and cocountable sets (that is, those

whose complements are countable), since this collection is closed under taking countable
unions, complements, and symmetric differences.

Define µ : {∗a} 7→ 1, the counting measure. Then µ+L is the measure which takes a
set A ⊆ ∗R, and returns the following:

• If A has cardinality n, where n is finite, then µ+L returns n;

• Otherwise µ+L returns ∞ (that is, in the case that A is infinite or hyperfinite).

So, for example, µ+L ({0, 1, . . . , N}) = ∞, where N is an infinite hypernatural. Notice

that µ+L need not be internal: the above µ+L is capable of distinguishing between finite
and infinite hypernaturals.

9.1. Comprehensiveness. We shall work in a sequentially comprehensive system, as
defined in Section 15.4 of Goldblatt [4]. That is, one in which any function f : N → B
from N to an internal set B ⊆ ∗R extends to a function ∗f : ∗N → B. Alternatively
stated, any sequence (sn)∞n=1 of elements of internal set B ⊆ ∗R will extend to an internal
hypersequence (∗sn)n∈∗N. (We implicitly used this property earlier when dealing with
hypersequences; it comes free of charge through the transfer principle when f admits a
first-order description, for instance.)

The ultrapower construction always creates a sequentially comprehensive system, for
what Goldblatt calls “intricate” reasons which we will not cover here.

The upshot will be as follows. Given an internal sequence of sets (An)n∈N, and a list
of properties (Pn) such that Am satisfies property Pn for all m ≥ n, we can extend the
sequence (An) to a hypersequence. For N an infinite hypernatural, AN will then have
property Pi for all finite naturals i. That is, we will have constructed an object which
has all these properties simultaneously.

This construction is akin in spirit to taking an intersection of nested sets with some
property, to obtain an object which has all the properties.

9.2. Alternative characterisation of Loeb measurability. Recall the classical fact
that a subset of [0, 1] is Lebesgue measurable if and only if it can be approximated
arbitrarily well by finite unions of intervals, and its complement can also be approximated
arbitrarily well by finite unions of intervals. (See the proof of Theorem 4.3a in [8], for
instance.)

With this in mind, we prove the following characterisation, from Section 16.6 of Gold-
blatt [4]. The goal here is to show that Lebesgue measure is a (rather natural) example
of a Loeb measure.



30 PATRICK STEVENS

Definition 9.5 (µ-approximability). Let A be an internal ring of subsets of S ⊆ ∗R,
and µ : A → ∗R≥0 ∪ {∞} a finitely-additive function.

We say that B ⊆ S is µ-approximable if, for every ε ∈ R>0, there are sets
Cε, Dε ∈ A with µL(Dε \ Cε) < ε and Cε ⊆ B ⊆ Dε.

Lemma 9.1. We can approximate any µ-approximable set B ⊆ ∗R by a member of
A, in the following sense: there is some A ∈ A such that the symmetric difference
A△B has µ+L -measure zero.

Proof. Take a sequence of nested 1
n -approximations Cn ⊆ B ⊆ Dn, and extend each

⟨Cn : n ∈ N⟩, ⟨Dn : n ∈ N⟩ to a hypersequence of 1
N -approximations for N ranging over

the hypernaturals. (This is justified by the remark on sequential comprehensiveness.)
Let the hypersequences be ⟨Cn : n ∈ ∗N⟩ and ⟨Dn : n ∈ ∗N⟩ where Cn ⊆ B ⊆ Dn for

all n ∈ ∗N. Then if we fix any (necessarily finite) k ∈ N, it is an internal true statement
that for every n ∈ ∗N, if n ≤ k then Cn ⊆ Dk ⊆ Dn (by nestedness).

Since all finite naturals k satisfy that property, it must be the case that some infinite
hypernatural K does too (because otherwise this would be a property that distinguished
between finite and infinite naturals, contradicting Theorem 5.1): there is K such that
for all n ∈ ∗N,

n ≤ K ⇒ Cn ⊆ DK ⊆ Dn

Then DK is our desired member of A such that µ+L (DK△B) = 0.
Indeed,

DK△B = (DK \B) ∪ (B \DK) ⊆ Dn \ Cn

for all n ∈ N. The right-hand side has µ+L -measure less than 1
n ; so we obtain that

µ+L (DK△B) is a standard real which is less than all 1
n .

That is, µ+L (DK△B) = 0. □

In fact, there is a very concrete definition of the Loeb measure µ+L of a set B ⊆ S ⊆ ∗R
which does not appear in the ring of sets A ⊆ P(S). This concreteness comes at the cost
of working with arbitrary ε > 0, but it will turn out to be the key ingredient allowing
us to move freely between Loeb measure and Lebesgue measure. Morally speaking,
Lebesgue measure is a statement about “those sets we may approximate by nice sets”,
and approximation is easiest with an ε-related treatment; this is the motivation for the
following lemma about Loeb measure.

Lemma 9.2. Suppose B ⊂ ∗R is Loeb measurable with finite Loeb measure. Then

µ+L (B) = inf{µL(A) : A ∈ A, B ⊆ A} = sup{µL(A) : A ∈ A, A ⊆ B}

Proof. We will assume the first equality; its proof requires manipulating the specific
construction of the measure µ+L according to the Carathéodory extension theorem. This
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is not particularly difficult, but it requires some “grubby details”. The proof may be
found2 as Lemma 16.5.1 of Goldblatt [4].

To prove the second equality, then, we will show that

µ+L (B) = sup{µL(A) : A ∈ A, A ⊆ B}

Let ε ∈ R>0. We need to find Aε ∈ A with Aε ⊆ B and

µ+L (B) < µL(Aε) + ε

Now, we stipulated that B had finite Loeb measure, so (by the first part of the lemma)

µ+L (B) = inf{µL(A) : A ∈ A, B ⊆ A} <∞

That is, there is some A ∈ A with B ⊆ A and µL(A) <∞.
We can therefore use the first part of the lemma again, applied to A \ B. (Drawing

Venn diagrams will elucidate this section.)
Since µL(A) is finite, we have

µ+L (A \B) = µL(A) − µ+L (B)

which is again finite, so by the first part of the lemma, we can approximate it: let C ∈ A
be such that A \B ⊆ C and

µL(C) < µ+L (A \B) + ε

Now, A \ C is a set-difference of members of A, so it lies in A; it is also a subset of
B, since A \B ⊆ C so A \ C ⊆ A \ (A \B) ⊆ B.

Then

C ⊇ (A \B) ⊔ (B \ [A \ C])

(where ⊔ is a disjoint union), and each of those terms is Loeb measurable, so

µL(C) ≥ µ+L (A \B) + µ+L (B \ [A \ C])

We chose C such that µL(C) < µ+L (A \B) + ε. Therefore

µ+L (B \ [A \ C]) < ε

so

µ+L (B) < µ+L (A \ C) + ε

Finally, we have already noted that A \ C lies in A, so the proof is complete: set
Aε = A \ C. □

Theorem 9.3 (Alternative definition of Loeb measurability). Let B ⊆ ∗R.
(1) Suppose B is µ-approximable. Then B is Loeb measurable.
(2) Suppose B is Loeb measurable with µL(B) ̸= ∞. Then B is µ-approximable.

2Be warned that Goldblatt abuses the notation µL(B) to mean µ+
L(B) when B is Loeb measurable.
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Proof. (1): We sketch this direction. Suppose B is µ-approximable. Recall that µ+L is
the measure obtained by extending µL to a measure on σ(A).

Then we can find a set A ∈ A such that µ+L (A△B) = 0 (for △ the symmetric
difference), as guaranteed by Lemma 9.1.

We now need to show that B itself is Loeb measurable: that is, it is measurable in
the sense of Definition 9.3 with respect to µ+L .

That is, for any E ∈ A, we need B to split E additively with respect to µ+L : we need

µ+L (E) = µ+L (E ∩B) + µ+L (E \B)

Recall from Definition 9.3 that every member of A is automatically µ+L -measurable;
so the equality holds if we replace B with A throughout. But we have defined A to be
“almost equal” to B in the sense of Lemma 9.1, and so by a simple argument (elucidated
by a Venn diagram), the equality holds with B as well. (For full details, see Lemma
16.6.3 of [4]; what remains of the argument is mere unenlightening algebra. The essence
is that “A is extremely close to B from the point of view of µ+L”.)

(2): Let ε ∈ R>0. We need to show that we can find approximating sets Cε, Dε ∈ A
with

µL(Dε \ Cε) < ε and Cε ⊆ B ⊆ Dε

But this is the content of Lemma 9.2:

µ+L (B) = inf{µL(A) : A ∈ A, B ⊆ A} = sup{µL(A) : A ∈ A, A ⊆ B}
so we can find Cε ∈ A with Cε ⊆ B such that

µL(Cε) ≥ µ+L (B) − ε

2
and we can similarly find Dε ⊇ B such that

µL(Dε) ≤ µ+L (B) +
ε

2
from which the result follows immediately. □

9.3. Lebesgue measure via Loeb measure. It turns out that Lebesgue measure
can be defined in a very natural way as a Loeb measure, by “assigning a weight to an
infinitesimal-width lattice on R”, as in Section 16.8 of Goldblatt [4].

Definition 9.6 (Loeb measure defining the Lebesgue measure). Fix an infinite
hypernatural N , and define a lattice

S =

{
k

N
: k ∈ ∗Z,−N2 ≤ k ≤ N2

}
Define PI(S) to be the collection of internal subsets of S, so each of its members

is hyperfinite (indeed, of hyperfinite size less than or equal to 2N2 + 1). It is an
internal algebra, and µ : PI(S) → ∗R≥0 given by

µ(A) =
|A|
N

defines a finitely additive function suitable for creating a Loeb measure.
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Specifically,

µL(A) = st

(
|A|
N

)
if |A|

N is finite; and µL(A) takes the literal value ∞ otherwise. µ+L is the measure on
σ(PI(S)) whose existence is guaranteed by the Carathéodory extension theorem.

Remark. Notice that µ+L is a measure on σ(PI(S)), not on PI(S). Since σ(PI(S)) may
contain some non-internal subsets of S, this means that while µL is restricted only to
internal sets, µ+L may be able to measure some external sets as well. An example is the
finite hyperreals, which are given by⋃

n∈N

∗(−n, n) ∩ S

This is a countable union of measurable sets, so it is measurable; but it cannot be
specified internally. The union is taken over a non-internal set.

Now we wish to show that, in some sense, the above Loeb measure coincides with the
Lebesgue measure λ on R.

Since µL is a function on subsets of the lattice S ⊂ ∗R, one might imagine that the
following procedure is required to find the “Loeb measure” of a set B ⊆ R (recalling
that, strictly speaking, only subsets of ∗R can have Loeb measure):

(1) Transfer B to the hyperreals;
(2) Intersect ∗B with S;
(3) Take the Loeb measure of the resulting set.

However, this procedure fails to give the desired answer for the set Q, which we know
to have Lebesgue measure 0. Indeed, ∗Q contains S, so it must have infinite Loeb
measure under this (faulty) scheme, rather than the 0 we would like if our measure
resembles Lebesgue measure. Additionally, if B is not an internal subset of R, then we
cannot necessarily transfer it to ∗R in the first place.

In keeping with the idea of “approximate with an infinitesimal mesh” (as opposed to
“project onto an infinitesimal mesh”), we instead aim to show that

λ(B) = µ+L (app [B])

where app [B], the “approximation of B”, is defined3 to be

app [B] = {s ∈ S : s is finite and st(s) ∈ B}

Definition 9.7. Given B ⊆ R, we will say B is “Loeb measurable” (with quotation
marks) if app [B] is Loeb measurable, with respect to µ+L . We will say B has “Loeb
measure” m (with quotation marks) if app [B] has Loeb measure m.

This notation is not standard.

3Goldblatt uses notation equivalent to st−1(·) for app [·] in Section 16.8 of [4].
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Remark. Notice that app [B] is not necessarily an internal set, because it relies on the
predicate “s is finite”. In fact, app [B] might not even be Loeb measurable. This
happens, for instance, whenever B is not Lebesgue measurable. We will prove this as
Theorem 9.6.

Example. In the case B = R, we have

app [B] = {s ∈ S : s is finite}

which is definitely not an internal set. Nonetheless, app [B] is still Loeb measurable,
because it is a countable (albeit non-internal) union (in ∗R) of Loeb measurable sets:⋃

n∈N
(S ∩ ∗(−n, n))

Each of the terms in the union is an internal subset of the lattice S, and so is Loeb
measurable.

Example (The Cantor set). Throughout this example, we will use the notation 0.a1a2 . . .
to denote ternary expansion. Recall that the Cantor set is defined as

C = {x ∈ [0, 1] : x contains no 1 in its ternary expansion}

It is well-known to have Lebesgue measure 0 despite being uncountable.
What is app [C]?
It is an internal fact of R that every real in [0, 1] has a ternary expansion. Therefore

it is true also in ∗R: every hyperreal in ∗[0, 1] has an expansion of the form

0.(a1a2 . . . anan+1 . . . )(. . . aM−1aMaM+1 . . . ) . . .

where M is an example of an infinite hypernatural number, and (to ensure uniqueness
of the expansion) we choose the ai so that it is never the case that from some point on,
all the aj are equal to 2.

The standard part of this number x is precisely

0.a1a2 . . .

the “standard part” of its base-3 expansion, where we truncate any infinite-index places.
So, a hyperreal s ∈ S lies in app [C] if and only if the “standard part” of its base-3

expansion consists only of the base-3 digits 0 and 2.
But how many of these are there? Recalling that N is the hypernatural denominator

of every element of our lattice S ⊆ ∗R, we can pick N = 3P (where P is hypernatural)
in such a way that all the elements k

N ∈ S have hyper-terminating base-3 expansion:

0.(a1a2 . . . )(. . . aP−1aP )

Then

app [C] = {(0.a1a2 . . . )(. . . aP−1aP ) : ai ̸= 1 for each i ∈ N}
This set is not a priori internal, because we built it using the “i ∈ N” clause. But it is
the following (external) nested intersection of Loeb measurable sets:

app [C] =
⋂
n∈N

{(0.a1a2 . . . )(. . . aP−1aP ) : ai ̸= 1 for each i < n}
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Being a countable intersection of Loeb measurable sets, it is measurable according to
the extension µ+L , and its measure is the limit of the measures of the components.

The component {(0.a1a2 . . . )(. . . aP−1aP ) : ai ̸= 1 for each i < n} has hyperfinite size

2n3P−n =

(
2

3

)n

3P

where we note that since every such ternary expansion is hyper-terminating, it is auto-
matically “acceptable” in that it is not of the form 0.a1a2 . . . aK−1aK2222 . . . for any
(finite or infinite) hypernatural K.

So the “Loeb measure” of C is

µ+L (app [C]) = st

(
|app [C] |

3P

)
= st

(
lim
n→∞

[
2

3

]n)
= 0

Theorem 9.4. Lebesgue measurable sets are “Loeb measurable”. That is,

(1) The “Loeb measure” of (a, b) ⊂ R exists, and is b− a.
(2) More generally, if B ⊆ R is Lebesgue measurable, then it is “Loeb measur-

able”, and its “Loeb measure” is equal to its Lebesgue measure.

Proof. (1):

app [(a, b)] = {s ∈ S : a < st(s) < b} =
⋃

n∈N≥1

[
S ∩ ∗(a+

1

n
, b− 1

n
)

]
This is a nested countable union of internal sets, so its Loeb measure exists and is equal
to the limit of the Loeb measures of the individual S ∩ ∗(a+ 1

n , b−
1
n).

But S ∩ ∗(a+ 1
n , b−

1
n) is hyperfinite, because it is an internally specified subset of a

hyperfinite set; so it has greatest and least elements g and l respectively, and it is easy
to see that g ≃ b− 1

n and l ≃ a+ 1
n .

Therefore

S ∩ ∗(a+
1

n
, b− 1

n
) =

{
K

N
,
K + 1

N
, . . . ,

L

N

}
for some K,L hypernaturals, where K

N = l and L
N = g. The internal cardinality of this

set is the hypernatural L−K + 1, so the Loeb measure is

st

(
|S ∩ ∗(a+ 1

n , b−
1
n)|

N

)
= st

(
L−K + 1

N

)
= st

(
g − l +

1

N

)
= b− a− 2

n

By taking the limit as n→ ∞, we obtain app [(a, b)] = b− a.
(2): This section of the proof will involve working with epsilons, as is characteristic

of showing that standard definitions are equivalent to non-standard ones.
Note that app [∅] = ∅, so the “Loeb measure” of ∅ coincides with the Lebesgue mea-

sure.
The first part of this theorem states that the “Loeb measure” agrees with Lebesgue

measure on a basis of the Borel σ-algebra on R. There is a uniqueness theorem for
measures, which forces the “Loeb measure” and the Lebesgue measure to agree on every
Borel set (since they already agree on a basis of the σ-algebra). This is the content of
Lemma 16.4.1 of [4].
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Now, every Lebesgue measurable set B can be approximated by Borel sets in an
arbitrarily fine way: for every ε there are Borel sets Cε and Dε such that

Cε ⊆ B ⊆ Dε

with λ(B \Cε) < ε, and similarly λ(Dε \B) < ε. (Recall this fact from the preamble to
Section 9.2 of this essay, as the alternative characterisation of Lebesgue measurability.)

Since Cε and Dε are Borel, they are “Loeb measurable”. Certainly

app [Cε] ⊆ app [B] ⊆ app [Dε]

but Cε has λ(Cε) = µ+L (Cε) by the fact that λ and µ+L agree on Borel sets; similarly

λ(Dε) = µ+L (Dε).
Therefore app [B] is µ-approximable (recall Definition 9.5)—strictly speaking, by tak-

ing a µ-approximation of Cε to be the smaller set and a µ-approximation of Dε to be
the larger set, as per Lemma 9.1—so by Theorem 9.3, B is “Loeb measurable”.

Its “Loeb measure” is sandwiched between λ(Cε) and λ(Dε) for all ε ∈ R>0, and the
sets Cε and Dε are at most 2ε apart in Lebesgue measure. Therefore the “Loeb measure”
of B is equal to the limit of the λ(Cε) (and also equal to the limit of the λ(Dε)), which
is λ(B). □

We now prove the other direction of the equivalence, using Theorem 9.3 on µ-approxima-
bility so that we may ensure we are always dealing concretely with “nice” sets. Again
the alternative characterisation of Lebesgue measurability (from the preamble to Section
9.2) will come into play: Lebesgue measurable sets are those which may be approximated
arbitrarily well by Borel sets.

First, we require a technical lemma, which is Theorem 11.13.1 of Goldblatt [4]. It
is technical in the sense that it is potentially sensitive to the explicit construction of
the hyperreals; it is a fact of the ultrapower construction. If we wished to remain
agnostic about the construction of the hyperreals, it would be necessary to insist that
we were working in a countably saturated system—a requirement which is satisfied by
the ultrapower construction—which is to say that the intersection of any decreasing
sequence of nonempty internal sets is nonempty. Goldblatt (in Theorem 11.10.1 of [4])
calls this a “delicate” fact about the ultrapower; we will not prove it here.

Lemma 9.5. Let X be an internal subset of ∗R. Then {st(x) : x ∈ X} is closed as
a subset of R.

Proof. Let r ∈ R be a limit point of {st(x) : x ∈ X}; say r is the limit of the sequence

(st(xi))i∈N

We need r = st(y) for some y ∈ X.
By omitting some terms of the sequence if necessary, we may pick each xi so that

∗|r − xi| <
1

i

That is,

xi ∈ X ∩ ∗(r − 1

i
, r +

1

i
)
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Given countable saturation, there is some y ∈ X lying in all the X ∩ ∗(r − 1
n , r + 1

n);
then st(y) = r as required, since for all n ∈ N, we have

|r − y| < 1

n

□

Theorem 9.6. Let B ⊆ R be “Loeb measurable” (that is, app [B] is Loeb measur-
able). Then B is Lebesgue measurable, and λ(B) is equal to µ+L (app [B]).

Proof. Let B be “Loeb measurable”. It is enough to show that B is Lebesgue measurable;
then Theorem 9.4 tells us that its “Loeb measure” is equal to its Lebesgue measure.

There are two cases: B’s “Loeb measure” is either finite or the literal value ∞.
If it is finite, then by Theorem 9.3, app [B] is µ-approximable. (Recall Definitions 9.5

and 9.6: A = PI(S) is the collection of internal subsets of the lattice S, and B has the
property that for every ε ∈ R>0, there are sets C,D ∈ PI(S) such that µL(D \ C) < ε
and C ⊆ app [B] ⊆ D.)

Let ε ∈ R>0, and pick ∗C, ∗D ∈ A approximating app [B] to within ε. (We label them
∗C and ∗D as a cue to the fact that these are internal subsets of the hyperreal lattice.)

Now, we would like to use ∗C to build a set of reals which approximates B from
below in the Lebesgue sense. There are two possible sets to take: the set of all standard
parts of elements of ∗C, or C itself. (These are in general not necessarily the same set:
consider ∗(0, 1), which contains an infinitesimal ε > 0 whose standard part is 0, even
though 0 does not lie in (0, 1).) It turns out that the correct set is the set

Cε := {st(c) : c ∈ ∗C}

By Lemma 9.5, Cε is closed; that makes it Borel, as is required for the alternative
definition of Lebesgue measurability.

Similarly the set Dε is open and hence Borel, where

Dε := R \ {st(d) : d ∈ S \ ∗D}

(This definition is a little cunning; it is designed to maximise the symmetry between Cε

and Dε. It reflects the idea of “cover the set and its complement” from the preamble
before Definition 9.5 of µ-approximability.)

We have

Cε ⊆ {st(b) : b ∈ app [B]} = B ⊆ Dε

by taking standard parts of the true-by-definition

∗C ⊆ app [B] ⊆ ∗D

We just need λ(Dε) − λ(Cε) to be small. But we have just proved (in Theorem 9.4)
that Lebesgue measurable sets have “Loeb measure” equal to their Lebesgue measure,
and we already know Cε and Dε are Borel and hence Lebesgue measurable, so

λ(Dε) − λ(Cε) = µ+L (app [Dε]) − µ+L (app [Cε])
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Finally, µ+L (∗C) ≤ µ+L (app [Cε]) because ∗C ⊆ app [Cε]. Indeed, to recap the defini-
tions,

∗C ∈ PI(S) and Cε = {st(c) : c ∈ ∗C}

so c ∈ ∗C implies st(c) ∈ Cε which means c ∈ {s ∈ S : st(s) ∈ Cε} = app [Cε].
And likewise µ+L (app [Dε]) ≤ µ+L (∗D) because app [Dε] ⊆ ∗D. Indeed, if s ∈ app [Dε]

then st(s) ∈ Dε so

st(s) ∈ R \ {st(d) : d ∈ S \ ∗D}

That is, s ∈ ∗D.
Therefore

λ(Dε) − λ(Cε) ≤ µL(∗D) − µL(∗C) < 2ε

so we have shown that B may be approximated arbitrarily well by Borel sets, so it is
Lebesgue measurable. This completes the first case.

If instead B’s “Loeb measure” is the literal ∞, then we may express B ⊆ R as the
following union: ⋃

n∈N
B ∩ (−n, n)

We can show that B itself is Lebesgue measurable by showing that each B ∩ (−n, n) is
Lebesgue measurable.

But note that

app [B ∩ (−n, n)] = app [B] ∩ app [(−n, n)]

so that set is Loeb measurable, being the intersection of two Loeb measurable sets. It
has finite Loeb measure, since

µ+L (app [B ∩ (−n, n)]) ≤ µ+L (app [(−n, n)]) = 2n

(using Theorem 9.4 to deduce that the “Loeb measure” of (−n, n) is equal to its Lebesgue
measure).

Therefore we are done by the first case, since B ∩ (−n, n) is a “Loeb measurable” set
with finite “Loeb measure”. □

Remark. The following remark is more in a handwaving motivational vein. Very loosely,
the lattice S can be viewed as a hyperfinite probability space, and the function µ on
it can be viewed as simply a constant (infinite) multiple of a probability measure. (A
probability measure would have to have denominator 2N2 + 1 rather than N , to make
the total probability 1 rather than infinite.) Then intuitively every point of a set B ⊂ R
is assigned infinitesimal measure, rather than the absolute zero measure assigned by the
standard theory. This is a powerful point in favour of the non-standard approach to
measure theory: now it is only literally impossible events that are assigned literally zero
measure, and all other events are assigned some positive, possibly infinitesimal, measure.
(Of course, on taking standard parts, producing µL and therefore bringing the results
back into the realm of standard probability theory, we recover the possibility that a
non-impossible event may have zero measure.)
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10. Brownian motion

Our primary reference for this section is Hurd and Loeb [6], where we use Chapter
IV.6.

Brownian motion is a model of the motion of a small particle (such as a speck of
pollen) suspended in a fluid (such as stationary air). It is physically observable with
a microscope, and it occurs because molecules of the surrounding fluid collide with the
particle in a random way, causing random changes of both course and speed.

Definition 10.1 (Brownian motion). Consider the random position Xt of a particle
on the real line at time t, where t varies between 0 and 1. Let Ω be the state
space of the variables Xt. We say the [0, 1]-indexed collection of random variables
⟨Xt : 0 ≤ t ≤ 1⟩ is a Brownian motion if:

(1) X0 = 0. That is, the particle starts at the origin.
(2) Given any sequence of nonempty intervals

[s1, t1], [s2, t2], . . . , [sn, tn]

where s1 < t1 ≤ s2 < t2 < · · · ≤ sn < tn, we have the random variables

Xt1 −Xs1 , . . . , Xtn −Xsn

all independent. That is, the particle’s overall movement during any time
period is not affected by its overall movement during any other time period.

(3) If s < t, then

P({ω ∈ Ω : Xt(ω) −Xs(ω) ≤ α}) = Φ

(
α√
t− s

)
for Φ the Gaussian integral

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du

That is, if the particle’s position at time s is known, then its position at time
t is normally distributed.

A non-standard way to obtain a Brownian motion is derived from considering a ran-
dom walk.

Let Ω(n) be the space of all sequences ω = (ω1, ω2, . . . , ωn), where each ωi = ±1. Let a
particle move by a distance of 1/

√
n every time-step tk = k/n, in the direction indicated

by ωk.
Then the position of the particle at time t following walk-sequence ω is given by

(2) χ(t, ω) =
1√
n

⌊nt⌋∑
i=1

ωi

The reason for the distance per step being 1/
√
n is so that the resulting walk has the

right variance to satisfy the normal distribution requirement that is item (3) in Definition
10.1; this is in anticipation of ⟨st(χ(t, ·)) : t ∈ [0, 1]⟩ being a Brownian motion when we
let n, the length of the sequences ω, be an infinite hypernatural.
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Theorem 10.1. Let χ be defined as in Equation 2. Let X0 = st(χ(0, ·)), a random

variable on state space Ω(N), where N is an infinite hypernatural. Then X0 is the
constant 0.

Proof. This is immediate: the sum defining X0 is the empty sum. □

Theorem 10.2. Let χ be defined as in Equation 2. Let Xt := st(χ(t, ·)) be [0, 1]-

indexed random variables on states Ω(N). Then for any s1 < t1 ≤ s2 < t2, the
random variables

Xt1 −Xs1 , Xt2 −Xs2

are independent.

Proof.

Xt1(ω) −Xs1(ω) = st(χ(t1, ω) − χ(s1, ω)) = st

 1√
N

⌊Nt1⌋∑
i=⌊Ns1⌋+1

ωi



Xt2(ω) −Xs2(ω) = st(χ(t2, ω) − χ(s2, ω)) = st

 1√
N

⌊Nt2⌋∑
i=⌊Ns2⌋+1

ωi


The two random variables are therefore clearly independent: their values are defined

by sums ranging over disjoint sections of the input ω. □

This proof easily generalises to the second property of Definition 10.1 with n rather
than two almost-disjoint intervals: in each interval, the sum is being taken over disjoint
regions of the input ω.

To prove the third property of Definition 10.1, we will need a non-standard analogue
of the Central Limit Theorem.

Definition 10.2 (∗-independence of random variables). Let (Xn)n∈∗N be an internal
sequence of random variables. We say they are ∗-independent if, given any internal
M -subtuple (Xni)

M
i=1, and given any internal M -tuple (αi)

M
i=1 of reals, we have

P ({ω ∈ Ω : X1(ω) < α1, . . . , XM (ω) < αM}) =
M∏
i=1

P({ω ∈ Ω : Xi(ω) < αi})

That is, “all hyperfinite subcollections are independent”.
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Lemma 10.3 (Non-standard Central Limit Theorem). Let (Xn)n∈∗N be an inter-
nal ∗-independent identically distributed sequence of random variables. Suppose the
mean of each random variable is 0 and the variance of each is 1. Then for any
infinite hypernatural M and any α ∈ ∗R, have

P

({
ω ∈ Ω :

1√
M

M∑
n=1

Xn(ω) ≤ α

})
≃ ∗Φ(α)

where we recall that Φ is the cumulative density of the normal distribution, as in
condition 3 of Definition 10.1.

We join Hurd and Loeb in omitting the proof of this lemma; it is a fairly short
but rather unenlightening consequence of the transfer principle applied to the standard
Central Limit Theorem. The proof may be found as Theorem 21 from Anderson [9].

Theorem 10.4. Property 3 of Definition 10.1 holds for the hyperfinite random walk.
That is, if χ is defined as in Equation 2, and Xt = st(χ(t, ·)), then

P({ω ∈ Ω(N) : Xt(ω) −Xs(ω) ≤ α}) = Φ

(
α√
t− s

)
Proof. The left-hand side is

P

ω ∈ Ω(n) : st

 1√
N

⌊Nt⌋∑
i=⌊Ns⌋+1

ωi

 ≤ α




In order to apply the non-standard Central Limit Theorem, we need to manipulate
this into a form which has a sum of random variables, rather than the standard part of
a sum of random variables.

We can convert standard parts of sums into simple sums by passing to a limiting
process: the left-hand side is precisely

lim
r→∞

P

ω ∈ Ω(n) :
1√
N

⌊Nt⌋∑
i=⌊Ns⌋+1

ωi ≤ α+
1

r




Now, to get this into precisely the form of the non-standard Central Limit Theorem,
we must rewrite the sum so that its indices are from 1 to some constant. Letting

T = ⌊Nt⌋ − ⌊Ns⌋

have

lim
r→∞

P

({
ω ∈ Ω(n) :

1√
T

T∑
i=1

ωi+⌊Ns⌋ ≤
(
α+

1

r

) √
N√
T

})
Let us assume for the moment that the collection of Yi(ω) := ωi+⌊Ns⌋ is ∗-independent.

Certainly they all have mean 0, variance 1, and are identically distributed.
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By the non-standard Central Limit Theorem, each term of the limit is infinitesimally
close to

∗Φ

((
α+

1

r

) √
N√
T

)
But Φ is uniformly continuous because it is increasing, bounded and continuous. (Re-

call the non-standard definition of uniform continuity from Section 4.1: infinitesimally
perturbing x induces only an infinitesimal perturbation in ∗Φ(x).) Therefore

st ∗Φ

((
α+

1

r

) √
N√
T

)
= Φ

(
st

((
α+

1

r

) √
N√
T

))
Recall that

T = ⌊Nt⌋ − ⌊Ns⌋

so √
N√
T

=

√
N√

⌊Nt⌋ − ⌊Ns⌋
≃ 1√

t− s

because

lim
n→∞

n

⌊nt⌋ − ⌊ns⌋
=

1

t− s

Therefore each term of our limit is infinitesimally close to

Φ

((
α+

1

r

)
st

(√
N√
T

))
= Φ

((
α+

1

r

)
1√
t− s

)
Taking the limit as r → ∞, obtain

Φ

(
α√
t− s

)
exactly as required.

We still need to show that the collection of Yi(ω) := ωi+⌊Ns⌋ is ∗-independent, so as
to justify the use of the non-standard Central Limit Theorem and complete the proof.
But this is immediate: each Yi inspects a different part of the input.

□

Together, Theorems 10.1, 10.2 and 10.4 prove that the non-standard “random walk”
approach yields a Brownian motion as defined in Definition 10.1.

Remark. In fact, it is possible to prove that almost all of these Brownian motions are
continuous: for almost all fixed ω, it is the case that t 7→ Xt(ω) is continuous. This is
Theorem 6.13 of Hurd and Loeb [6].

That is, this scheme of creating Brownian motions almost always creates “physically
realistic” motions, in the sense that the paths are continuous.
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